检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陶冶[1] 郭帅童 丁香乾[2] 侯瑞春[2] 初佃辉[3] TAO Ye;GUO Shuaitong;DING Xiangqian;HOU Ruichun;CHU Dianhui(College of Information Science and Technology,Qingdao University of Science and Technology,Qingdao 266071,China;College of Information Science and Engineering,Ocean University of China,Qingdao 266000,China;School of Computer Science and Technology,Harbin Institute of Technology(Weihai),Weihai 264209,China)
机构地区:[1]青岛科技大学信息科学技术学院,山东青岛266071 [2]中国海洋大学信息科学与工程学院,山东青岛266000 [3]哈尔滨工业大学(威海)计算机科学与技术学院,山东威海264209
出 处:《计算机集成制造系统》2022年第9期2918-2926,共9页Computer Integrated Manufacturing Systems
基 金:国家重点研发计划资助项目(2018YFB1702902);山东省高等学校青创科技支持计划资助项目(2019KJN047)。
摘 要:为解决企业数据空间构建过程中分散、异构的数据集成与融合问题,提出一种基于动态探针的实体关联关系构建方法。通过在不同应用系统的业务逻辑层和数据访问层之间部署探测点,动态收集全局数据结构、相关数据和访问日志等关键信息,分别从模式、实例和日志3个层面构建面向企业数据空间的实体关联模型。在模式关联层面,采用结合语义分析的多维相似度判别算法实现相似实体的快速融合;在实例关联层面,针对数值型、字符型等结构化数据与长文本型等非结构化数据,利用基于特征向量相似度分析与深度学习相结合的方法完成对不同实体的关联匹配;在日志关联层面,通过分析数据访问日志中的等价关系建立不同实体和属性之间的关联。此外,为解决关联关系构建过程中的不确定性问题,采用基于模糊逻辑的推理模型,给出最终的实体关联构建方案。To solve the problem of scattered and heterogeneous data integration and fusion in the process of enterprise data space construction,a method of entity association relationship construction based on dynamic probe was proposed.By deploying probe points between business logic layer and data access layer of different application systems,key information such as global data structure,access log and related data was collected dynamically.Entity association model oriented to enterprise data space was constructed from three levels of pattern,instance and log.In the pattern association level,the multi-dimensional similarity discrimination algorithm combined with semantic analysis was used to realize the rapid fusion of similar entities;in the case association level,for the structured data such as numerical type,character type and the unstructured data such as long text type,the method based on feature vector similarity analysis and deep learning was used to complete the association matching of different entities;in the log association level,the association between different entities and attributes was established by analyzing the equivalence relations in the data access log.In addition,to solve the problem of uncertainty in the process of association construction,the final entity association construction scheme was given by using the reasoning model based on fuzzy logic.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.149.30