基于GPU并行计算的快速视觉惯性里程计方法  被引量:1

Fast visual inertial odometry method based on GPU parallel computing

在线阅读下载全文

作  者:陈财富 汪双 陈波 张华[1,2] 王姮[1,2] CHEN Caifu;WANG Shuang;CHEN Bo;ZHANG Hua;WANG Heng(School of Information Engineering,Southwest University of Science and Technology,Mianyang 621000,China;Special Environment Key Laboratory of Sichuan Province,Southwest University of Science and Technology,Mianyang 621010,China)

机构地区:[1]西南科技大学信息工程学院,四川绵阳621000 [2]西南科技大学特殊环境机器人四川省重点实验室,四川绵阳621010

出  处:《传感器与微系统》2022年第10期18-21,25,共5页Transducer and Microsystem Technologies

基  金:国家“十三五”核能开发科研资助项目(20161295);四川省科技计划资助项目(2019YFG0143)。

摘  要:针对当前视觉即时定位与地图构建(VSLAM)前端视觉惯性里程计(VIO)存在运算量大导致计算时间长的问题,提出了一种全新的基于图形处理器(GPU)并行加速的VIO方法。首先,对VIO进行加速算法设计,包括限制对比度的自适应性直方图均衡化(CLAHE)算法加速、FAST角点筛选改进加速以及改进光流跟踪算法加速。最后,将设计的加速算法串并组合成前端,结合开源VINS-Mono后端进行定位精度与实时性测试,平均耗时减少12.03 ms,定位精度均方根(RMS)值相差0.008 963 m。实验结果表明:提出的方法在保持定位精度的同时提升了算法实时性能,且优于VINS-Mono中基于OpenCV GPU加速的方法。Aiming at the problem of long calculation time caused by a large amount of calculation of current visual inertial odometer(VIO) of the front-end visual simultaneous localization and mapping(VSLAM),and a new VIO method based on graphics processing unit(GPU)parallel acceleration is proposed.Firstly, VIO is designed to accelerate the algorithm, including contrast limited adaptive histogram equalization(CLAHE)algorithm acceleration, FAST corner screening improved acceleration, and improved optical flow tracking algorithm acceleration.Finally, the designed acceleration algorithm is combined into a front-end in series and parallel, combined with the open source VINS-Mono back-end for positioning precision and real-time testing, the average time consumption is reduced by 12.03 ms, and the positioning precision RMS difference is 0.008 963 m.Experimental results show that the proposed method improves the real-time performance of the algorithm while maintaining the positioning precision, and it is prior to the method based on OpenCV GPU acceleration in VINS-Mono.

关 键 词:视觉即时定位与地图构建 视觉惯性里程计 图形处理器 OpenCV数据库 加速 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象