模糊自整定PID对开关磁阻电机转矩脉动抑制  被引量:4

Restraining torque ripple of switched reluctance motor by fuzzy self-tuning PID method

在线阅读下载全文

作  者:安治国[1] 张振 张东阳 王龙轩 AN Zhiguo;ZHANG Zhen;ZHANG Dongyang;WANG Longxuan(College of Mechanotronics&Vehicle Engineering,Chongqing Jiaotong University,Chongqing 400074,China)

机构地区:[1]重庆交通大学机电与车辆工程学院,重庆400074

出  处:《重庆理工大学学报(自然科学)》2022年第8期86-93,共8页Journal of Chongqing University of Technology:Natural Science

基  金:重庆市科委项目(cstc2019jcyj-msxmX 0761);重庆市研究生导师团队建设项目(JDDSTD2019007)。

摘  要:传统的电流斩波控制策略常存在转矩脉动大的问题,限制了开关磁阻电机在NVH性能要求较高领域的应用。在传统的电流斩波算法的基础上,提出了一种模糊自整定PID控制器结合PWM信号发生器的控制策略。在Matlab/Simulink平台上,搭建了基于模糊自整定PID策略的电机控制模型。将电机转速信息输入模糊自整定PID控制器,根据模糊规则确定最优PID参数,产生参考电流,将参考电流与瞬时电流进行比较,对输出的电流波形进行实时调整。仿真结果表明:与传统算法相比,模糊自整定PID控制策略响应速度快,可以减小电流波动峰值,显著提升转矩脉动抑制效果。The traditional control strategy of the current chopping has the problem of large torque ripple, which limits the application of switched reluctance motors in the occasion of higher demand for NVH performance. On the basis of the traditional current chopping method, a fuzzy self-tuning PID controller combined with control strategy of PWM signal generator is proposed. A simulation model using fuzzy self-tuning PID controller is built by Matlab/Simulink platform. The motor speed information is input into the fuzzy self-tuning PID controller, and the optimal PID parameters are determined according to the fuzzy rules to generate the reference current. The reference current is compared with the instantaneous current, and the output current waveform is adjusted in real time. The simulation results show that, compared with the traditional algorithm, the fuzzy self-tuning PID control strategy has a faster response speed, can reduce the peak value of current fluctuation, and significantly improve the torque ripple suppression effect.

关 键 词:开关磁阻电机 模糊自整定 PID控制器 转矩脉动 电流斩波 

分 类 号:TM352[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象