检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张嘉 李新增 康鹏 朱海云 金婕[1] ZHANG Jia;LI Xinzeng;KANG Peng;ZHU Haiyun;JIN Jie(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
机构地区:[1]上海工程技术大学电子电气工程学院,上海201620
出 处:《智能计算机与应用》2022年第9期119-122,共4页Intelligent Computer and Applications
基 金:国家自然科学基金(61801286)。
摘 要:本文针对在金属的生产和制造过程中的金属图片表面异常,设计了一种基于第五代精简指令集计算机的片上系统。运用结构精简、准确率高的生成对抗网络算法实现了对异常金属图片数据集的分类;在Xilinx Nexys4 DDR2 FPGA开发板上通过设计的硬件片上系统生成比特流文件,实现了整个端到端的识别系统,并结合已有的数据测试集验证了识别系统的实用性。实验结果表明,在异常金属图片数据集中,输入图片分辨率为64×64,在板上系统内实现了高达99.9%的识别准确率,为工业生产制造与异常检测提供了质量和效率保证。Aiming at the abnormal surface of the metal pictures in the metal production and manufacturing process, a SOC based on the fifth-generation simplified instruction system RISC-V is designed. The detection and classification of anomaly metal images data sets are realized by using a simplified and highly accurate generative adversarial network algorithm. The whole end-to-end identification system is verified and implemented on Xilinx Nexys4 DDR2 FPGA development board. The experimental results show that in the abnormal metal images data set, the input images resolution is 64×64, and the recognition accuracy rate achieved in the on-board system can reach 99.9%, which provides the guarantee of the quality and efficiency for industrial production, manufacturing and anomaly detection.
关 键 词:第五代精简指令集计算机 异常检测 生成对抗网络 片上系统
分 类 号:TP332[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222