基于委托代理理论的医疗资源共享激励机制研究  被引量:2

Research on Incentive Mechanism of Medical Resource Sharing Based on Principal-Agent Theory

在线阅读下载全文

作  者:王熹徽[1] 朱磊[1] WANG Xi-hui;ZHU Lei(School of Management,University of Science and Technology of China,Anhui 230026,Hefei,China)

机构地区:[1]中国科学技术大学管理学院,安徽合肥230026

出  处:《华南理工大学学报(社会科学版)》2022年第5期102-113,共12页Journal of South China University of Technology(Social Science Edition)

基  金:国家自然基金面上项目“基于匮乏理论的灾害运作管理痛苦量化方法和优化模型研究”(7207010290)。

摘  要:鉴于我国医疗领域资源分配不均,布局呈现“两极化”,缺乏全局布置和整合的失衡问题,基于委托代理理论,构建不对称信息下的医疗资源共享激励模型,探究最优激励因子和努力水平,讨论固定报酬和共享收益机制下的激励特征和最优参数设置条件,结合数值仿真和敏感性分析,进一步验证模型的有效性。研究结果表明:共享收益激励机制更为有效,医院的努力水平与激励因子正相关;政府的期望效用与激励因子正相关、与风险规避系数和随机因素负相关;努力水平和期望效用对激励因子更为敏感,但是外生的随机波动和环境风险因素亦不可忽视。最后,提出设定和完善激励机制的决策依据和政策建议。In view of the uneven distribution of resources and the“polarization”of the distribution in the medical field in China,and the lack of overall distribution and the imbalance in integration,based on the principal-agent theory,this paper constructs the incentive model of medical resource sharing under asymmetric information,explores the optimal incentive factors and effort level,and then discusses the incentive characteristics and optimal parameter setting under the mechanism of fixed reward and shared income.Combined with numerical simulation and sensitivity analysis,the validity of the model is further verified.The results show that the revenue sharing incentive mechanism is more effective,the level of hospital effort is positively correlated with incentive factors,the expected utility of government is positively correlated with incentive factors,and negatively correlated with risk aversion coefficient and random factors.Effort level and expected utility are more sensitive to incentive factors,but exogenous random fluctuations and environmental risk factors can t be ignored.Finally,the decision-making basis and policy recommendations are provided for the government to set and improve the incentive mechanism.

关 键 词:医疗资源共享 委托-代理 信息不对称 激励机制 

分 类 号:C93[经济管理—管理学] R197.1[医药卫生—卫生事业管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象