检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:袁清波 杜晓明 姚奕 杨帆 蒋祥 YUAN Qingbo;DU Xiaoming;YAO Yi;YANG Fan;JIANG Xiang(Command and Control Engineering College,Army Engineering University of PLA,Nanjing 210007,China)
机构地区:[1]陆军工程大学指挥控制工程学院,南京210007
出 处:《火力与指挥控制》2022年第9期48-53,共6页Fire Control & Command Control
基 金:全军军事类研究生资助课题(JY2019C078)。
摘 要:针对军事指挥控制保障领域知识图谱构建的实际,提出了一种融合汉字多特征的BiLSTM+CRF命名实体识别模型,验证了拼音特征、五笔编码特征和分词边界特征对于模型性能的影响。对军事领域的命名实体识别相关工作和整体研究框架进行介绍;详细介绍模型中各层实现的原理和相关细节;通过在军事指挥控制保障领域命名实体识别语料库C2NER上进行实验,结果表明分词边界特征对于模型性能的提升效果较为明显,F1值从67.21%提升到了70.23%,而拼音特征和五笔特征对于模型性能提升则效果一般。Aiming at the reality of knowledge graph construction in military command and control support field,this paper proposes a named entity recognition model of BiLSTM+CRF,which integrates multiple features of Chinese characters,and verifies the influence of Pinyin features,Wubi coding features and word segmentation boundary features on the performance of the model.Firstly,the related work and the whole research framework of named entity recognition in military field are introduced;Secondly,the implementation principle and related details of each layer in the model are introduced in detail;Finally,the experiment is carried out on C2NER,which is a named entity recognition corpus in the field of military command and control support.The results show that the segmentation boundary feature can improve the performance of the model obviously,and the F1 value is increased from 67.21%to 70.23%,while the Pinyin feature and Wubi feature can improve the performance of the model generally.
关 键 词:命名实体识别 汉字特征 军事指挥控制保障 知识图谱
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170