检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:柏财通 崔翛龙 李爱 BAI Caitong;CUI Xiaolong;LI Ai(Graduate Group,Engineering University of PAP,Xi’an 710086,China;Urumqi Campus of Engineering University of PAP,Urumqi 830049,China;Anti-terrorism Command Information Engineering Research Team,Engineering University of PAP,Xi’an 710086,China)
机构地区:[1]武警工程大学研究生大队,西安710086 [2]武警工程大学乌鲁木齐校区,乌鲁木齐830049 [3]武警工程大学反恐指挥信息工程研究团队,西安710086
出 处:《计算机工程》2022年第10期103-109,共7页Computer Engineering
基 金:国家自然科学基金(U1603261);网信融合项目(LXJH-10(A)-09)。
摘 要:当联邦学习(FL)算法应用于鲁棒语音识别任务时,为解决训练数据非独立同分布(Non-IID)与客户端模型缺乏个性化问题,提出基于个性化本地蒸馏的联邦学习(PLD-FLD)算法。客户端通过上行链路上传本地Logits并在中心服务器聚合后下传参数,当边缘端模型测试性能优于本地模型时,利用下载链路接收中心服务器参数,确保了本地模型的个性化与泛化性,同时将模型参数与全局Logits通过下行链路下传至客户端,实现本地蒸馏学习,解决了训练数据的Non-IID问题。在AISHELL与PERSONAL数据集上的实验结果表明,PLD-FLD算法能在模型性能与通信成本之间取得较好的平衡,面向军事装备控制任务的语音识别准确率高达91%,相比于分布式训练的FL和FLD算法具有更快的收敛速度和更强的鲁棒性。This study proposes a personalized local distillation-based Federated Learning(FL)algorithm,called PLDFLD,to solve the problem of Non-Independent Identical Distribution(Non-IID)of the training data and the lack of personalization of client models when the FL algorithm is applied to robust speech recognition tasks.First,the clients upload local Logits through the uplink.Second,the center server sends the parameters under aggregation only when the edge model test performance is better than that of the local model,to use a center server to download and link the parameters and ensure the personalized and generalization of the local model.Finally,the model parameters and global Logits are downloaded to the client through a downlink,and local distillation learning is performed to overcome the problem of Non-IID training samples.The experimental results on the AISHELL and PERSONAL datasets show that the PLD-FLD algorithm can improve balance model performance and reduce communication costs.The speech recognition accuracy in military equipment control tasks reaches 91%.The PLD-FLD algorithm exhibits higher convergence speed and better robustness than the distributed training FL and Federated Learning Distillation(FLD)algorithms.
关 键 词:鲁棒语音识别 联邦学习 本地蒸馏 非独立同分布 分布式训练
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28