检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴旭 刘翔[1] WU Xu;LIU Xiang(School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
机构地区:[1]上海工程技术大学电子电气工程学院,上海201620
出 处:《电子科技》2022年第10期59-64,共6页Electronic Science and Technology
基 金:国家自然科学基金(81101105);文化部科技创新项目(2015KJCXXM19)。
摘 要:针对数字图像复制-粘贴篡改无法区分目标与来源的问题,文中通过改进相似度匹配算法和利用非局部自注意力机制,在定位出篡改区域的前提下,解决了篡改源区域和目标区域的分类问题。总体框架为双分支检测网络,主分支采用经典U-net分割篡改区域像素,副分支通过孪生网络进行特征提取并计算自相关性,从而分割出篡改目标与源区域像素。将双分支融合后进行端到端训练,最终网络预测出三分类结果。实验结果表明,文中算法检测定位目标区域时的像素级分类精确率达到了80.47%,且F1值及准确度均优于对比算法。可视化结果和鲁棒性实验也表明文中算法具有良好的泛化性能。On account of the problem that forgery target and source of digital image copy-move manipulation cannot be distinguished,this study improves the similarity matching algorithm and uses non-local self-attention mechanism to solve the classification problem of copy-move forgery source and target areas,under the premise that manipulated regions are detected.The overall framework is a dual-branch detection network.The main branch uses the classic U-net to segment the pixel of forgery regions,and the auxiliary branch uses the siamese network to extract features and calculate the autocorrelation to separate the forgery targets and source area pixels.Finally,three-categories results can be predicted by end-to-end training after fusing two branches.The experiment result shows that the pixel-level classification accuracy of the proposed algorithm when detecting the localized target area reaches 80.47%,and the F1 value and accuracy are better than the compared algorithm.The visualization results and robustness experiments also show that the proposed algorithm has excellent generalization performance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15