A Mixed Formulation of Stabilized Nonconforming Finite Element Method for Linear Elasticity  被引量:1

在线阅读下载全文

作  者:Bei Zhang Jikun Zhao 

机构地区:[1]College of Science,Henan University of Technology,Zhengzhou,Henan 450001,China [2]School of Mathematics and Statistics,Zhengzhou University,Zhengzhou,Henan 450001,China

出  处:《Advances in Applied Mathematics and Mechanics》2020年第1期278-300,共23页应用数学与力学进展(英文)

基  金:supported by National Natural Science Foundation of China(No.11701522);Key scientific research projects in colleges and universities in Henan Province(No.18A110030);Research Foundation for Advanced Talents of Henan University of Technology(No.2018BS013).

摘  要:Based on the primal mixed variational formulation,a stabilized nonconforming mixed finite element method is proposed for the linear elasticity problem by adding the jump penalty term for the displacement.Here we use the piecewise constant space for stress and the Crouzeix-Raviart element space for displacement.The mixed method is locking-free,i.e.,the convergence does not deteriorate in the nearly incompressible or incompressible case.The optimal convergence order is shown in the L^(2)-norm for stress and in the broken H1-norm and L2-norm for displacement,respectively.Finally,some numerical results are given to demonstrate the optimal convergence and stability of the mixed method.

关 键 词:Mixed method nonconforming finite element ELASTICITY LOCKING-FREE STABILIZATION 

分 类 号:O24[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象