Numerical Integration over Pyramids  

在线阅读下载全文

作  者:Chuanmiao Chen Michal Krızek Liping Liu 

机构地区:[1]Institute of Computer Science,Hunan Normal University,Changsha 410081,Hunan,China [2]Institute of Mathematics,Academy of Sciences,CZ-11567 Prague,Czech Republic [3]Department of Mathematical Sciences,Lakehead University,Thunder Bay,ON,P7B 5E1,Canada [4]Department of Applied Mathematics,Anhui Agricultural University,Hefei,230036,Anhui,China

出  处:《Advances in Applied Mathematics and Mechanics》2013年第3期309-320,共12页应用数学与力学进展(英文)

基  金:This paper was supported by The National Natural Science Foundation of China(No.10771063);Key Laboratory ofHigh performance Computation and Stochastic Information Processing,Hunan Province and Ministry of Education,Institutional Research Plan No.AV0Z 10190503,Anhui Agricultural University(yj2012-03);Grant No.IAA 100190803 of the Academy of Sciences of the Czech Republic and The Natural Sciences and Engineering Research Council of Canada.The authors are indebted to Pavel Krızek and Kevin B.Davies for their help in preparation of Figs.1 and 2,and Jan Brandts for fruitful discussions.

摘  要:Pyramidal elements are often used to connect tetrahedral and hexahedral elements in the finite element method.In this paper we derive three new higher order numerical cubature formulae for pyramidal elements.

关 键 词:Reference pyramidal element nonlinear systems of algebraic equations Bramble-Hilbert lemma TRIANGULAR tetrahedral and pyramidal numbers 

分 类 号:O24[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象