检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:殷笑茹 焦圣明 喜度[3] 程婷 李玉涛 YIN Xiaoru;JIAO Shengming;XI Du;CHENG Ting;LI Yutao(Jiangsu Meteorological Information Center,Nanjing 210008,China;Key Laboratory of Transportation Meteorology,China Meteorological Administration,Nanjing 210008,China;Jiangsu Meteorological Observatory,Nanjing 210008,China)
机构地区:[1]江苏省气象信息中心,南京210008 [2]中国气象局交通气象重点开放实验室,南京210008 [3]江苏省气象台,南京210008
出 处:《气象科学》2022年第4期539-548,共10页Journal of the Meteorological Sciences
基 金:江苏省气象局青年基金项目(KQ201811)。
摘 要:本文在研究地面小时降水量与自动站其他观测要素的关联关系和雷达定量估测降水的基础上,提出从自动站关联要素和雷达估测降水两个角度对地面降水进行综合质量控制的多源质量控制方法。利用该方法对2019年5至6月江苏省国家级自动站小时降水量进行质量控制,结果表明:1 h相对湿度变化值、1 h变温,相对湿度与小时降水量关联关系较好;基于SFLA-BP的雷达定量估测降水结果与Z-I关系法相比精度更高,提升了天气雷达对降水质量控制的有效性;多源降水质量控制方法比MDOS准确率提高1.45%,产生可疑数据量下降67.16%,该方法能有效提升现有降水质量控制方法的准确性。Based on the study of the correlation between surface hourly rainfall and other observation factors of automatic stations and the quantitative estimation of rainfall by radar based on neural network, this paper presents a multi-source quality control method for ground rainfall from two aspects of automatic station correlation and radar estimation. Results show that the change value of the relative humidity in one hour, the change temperature in one hour, the correlation between the relative humidity and the hourly rainfall is good;compared with the Z-I relation method, the radar based on SFLA-BP has higher precision, which improves the effectiveness of radar in rainfall quality control. The accuracy of multi-source rainfall quality control method is 1.45% higher than that of MDOS, the quantity of generating suspicious data decreased by 67.16%. This method can effectively improve the accuracy of existing rainfall quality control methods.
关 键 词:质量控制 地面降水 关联分析 雷达定量估测降水 神经网络
分 类 号:P415.12[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.154.250