基于车-路通信的汽车-行人碰撞风险辨识方法研究  

Vehicle-pedestrian Collision Risk Identification Method Based on Vehicle-road Communication

在线阅读下载全文

作  者:陈崧 董玉莲 CHEN Song;DONG Yulian(Jiangxi Lutong Technology Co.,Ltd,Nanchang 330002,China;School of Transportation Engineering,East China Jiaotong University,Nanchang 330013,China)

机构地区:[1]江西路通科技有限公司,南昌330002 [2]华东交通大学交通运输工程学院,南昌330013

出  处:《交通与运输》2022年第5期29-33,共5页Traffic & Transportation

摘  要:为减少城市道路交叉口处机动车与非机动车、行人等弱势交通参与者的冲突和碰撞,保障弱势交通参与者的安全通行,提出基于车路协同技术的面向城市道路交叉口人行道区域机动车与行人冲突碰撞风险的辨识和预警方法。首先,对行人避碰预警系统的框架结构进行设计,在车联网/车路协同条件下,车辆可以实时采集并传输机动车和行人的运动姿态信息;其次,通过行人避碰预警模型判断机动车与行人之间的碰撞风险,建立交叉口行人避碰分级预警模型,并通过VISSIM搭建碰撞场景进行仿真验证;最后,根据机动车与行人之间的碰撞时间来对驾驶员进行分级预警提示。In order to reduce the conflict and collision between motor vehicles and vulnerable traffic participants such as nonmotorized vehicles and pedestrians at urban road intersections,and to ensure the safe passage of weak traffic participants,an innovative method for identifying and early warning the collision risk of motor vehicles and pedestrians in the sidewalk area of urban road intersections based on vehicle-road synergy technology is innovatively proposed.Firstly,the framework structure of the pedestrian collision avoidance early warning system is designed,and under the condition of vehicle networking/vehicleroad coordination,the vehicle can collect and transmit the movement posture information of motor vehicles and pedestrians in real time.Secondly,the collision risk between motor vehicles and pedestrians is judged by the pedestrian collision avoidance early warning model.Then,a hierarchical early warning model for pedestrian collision avoidance at the intersection is established,and the collision scenario is built by VISSIM for simulation verification.Finally,according to the collision time between the motor vehicle and the pedestrian,the driver is graded and warned.

关 键 词:行人碰撞风险辨识 车联网 车路协同 车辆碰撞预警 冲突风险模型 

分 类 号:U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象