检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金浩哲 董宝良[1] 杨诚[1] JIN Haozhe;DONG Baoliang;YANG Cheng(Department 4 of System,North China Institute of Computing Technology,Beijing 100083,China)
机构地区:[1]华北计算技术研究所系统四部,北京100083
出 处:《电子设计工程》2022年第20期51-55,共5页Electronic Design Engineering
摘 要:军事命名实体识别是军事情报分析和作战信息服务的基础。为了解决军事文本中分词不准确、形式多样以及语料库缺乏的问题,文中提出了一种基于预训练模型与神经网络的军事命名实体识别方法。通过BERT预训练模型构建词向量,利用BiLSTM神经网络处理上下文信息的优势,同时加入注意力机制,并通过条件随机场进行解码,完成了军事命名实体识别任务。在自构建的军事文本语料库上的实验结果表明,该模型F1值为92.14%,优于其他的传统方法。Military named entity recognition is the basis of military intelligence analysis and operational information services. In order to solve the problems of inaccurate and diverse forms of word separation in military texts and the lack of corpus,propose a military named entity recognition method based on pretraining model and neural network. The military named entity recognition task is accomplished by constructing word vectors through BERT pre-training model,using the advantage of BiLSTM neural network to process contextual information,while adding attention mechanism and decoding by Conditional Random Fields. Experimental results on a military text corpus of self-acquired pieces show that the model has an F1 value of 92.14%,which is better than other traditional methods.
关 键 词:命名实体识别 BERT BiLSTM 条件随机场 注意力机制
分 类 号:TN391.1[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3