检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈天锴 王贵勇[1] 申立中[1] 姚国仲[1] CHEN Tiankai;WANG Guiyong;SHEN Lizhong;YAO Guozhong(Yunnan Key Laboratory of Internal Combustion Engines,Kunming University of Science and Technology,Kunming 650500,China)
机构地区:[1]昆明理工大学云南省内燃机重点实验室,云南昆明650500
出 处:《车用发动机》2022年第5期51-58,共8页Vehicle Engine
基 金:云南省科技计划项目(202104BN050007);国家自然科学基金项目(52066008)。
摘 要:柴油机作为一种多输入多输出的高复杂度与耦合度系统,难以用精确的物理与化学模型准确描述。通过空间填充设计采集训练数据集,采用GBDT(Gradient Boosting Decision Tree,梯度提升决策树)算法构建了柴油机有效燃油消耗率(BSFC)、NO_(x)和CO预测模型,并对模型进行了验证。结果表明:预测模型收敛速度较快;BSFC,NO_(x),CO拟合程度R^(2)分别为0.981,0.993,0.992;预测值平均相对误差为0.81%,3.68%,2.95%;模型生成的BSFC,NO_(x),CO响应与真实柴油机趋势具有一致性;预测模型有较高的精确度和稳定性。梯度提升决策树算法对柴油机建模有较高的适应度,能够有效解决多特征高维非线性柴油机系统问题,为柴油机性能预测建模提供了一种行之有效的方法。As a high complexity and coupling system with multi-input and multi-output,diesel engine is difficult to describe accurately with accurate physical and chemical models.Training data sets were collected through space-filling design,and the BSFC,NO_(x) and CO prediction models were built by GBDT(Gradient Boosting Decision Tree)algorithm and further verified.The results show that the convergence velocity of prediction model is fast.The fitting degree R^(2) of BSFC,NO_(x) and CO are 0.981,0.993 and 0.992 respectively,and the average relative errors of predicted values are 0.81%,3.68%and 2.95%respectively.The responses of BSFC,NO_(x) and CO generated by the model are consistent with the trends of real diesel engine.The prediction model has high accuracy and stability.The gradient lifting decision tree algorithm has high adaptability to diesel engine modeling,and can effectively solve the problems of multi-feature high-dimensional nonlinear diesel engine system,which provides an effective method for diesel engine performance prediction modeling.
关 键 词:柴油机 性能预测 数学模型 梯度提升决策树 空间填充设计
分 类 号:TK421.8[动力工程及工程热物理—动力机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3