检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:牛高远 孟凡提 陈天锦 刘苗苗 边慧萍 贾甜 NIU Gaoyuan;MENG Fanti;CHEN Tianjin;LIU Miaomiao;BIAN Huiping;JIA Tian(Xuji Power Co.,Ltd.,Xuchang 461000,China;Henan Key Laboratory of Intelligent Charging Technology,XuChang 461000,China)
机构地区:[1]许继电源有限公司,河南许昌461000 [2]河南省智能充电技术重点实验室,河南许昌461000
出 处:《电器与能效管理技术》2022年第9期51-57,共7页Electrical & Energy Management Technology
基 金:国家电网公司总部科技项目(5418-202155247A-0-0-00)。
摘 要:为了解决V2G充放电系统参与电网互动,但缺乏有序管理的问题,提出一种计及天气因素影响的有序充放电控制策略。所提策略以天气数据的欧式距离为依据,改进了BP神经网络的训练样本选择方法,训练后的网络模型,能可靠预测充放电机的有功或无功功率调节值。MATLAB的仿真结果表明,控制策略在充电或放电模式下,都能及时进行有功或无功支撑。最后,基于该控制策略的60 kW充放电机,在虚拟电厂中的示范应用数据证明,充放电机能够结合当前电网状态,达到功率调度的预期目标,可有效避免电动汽车充放电能量的无序流动,增强电网应对指标异常的能力。In order to solve the problem that V2 G charging and discharging system participates in the interaction of power grid,but lacks orderly management,an orderly charging and discharge control strategy considering the weather factors is proposed.The strategy improves the training sample selection method of BP neural network based on the Euclidean distance of weather data.Then,the trained network model can reliably predict the active or reactive power regulation value of the charging and discharging motor.The simulation results in MATLAB show that the strategy can support the active or reactive power in time under the mode of charging or discharging.Finally,one V2 G prototype with power of 60 kW is demonstrated and applied in virtual power plant.The measured data shows that the prototype can achieve the expected goal of power dispatching by combinating the current state of power grid.The proposed strategy can effectively avoid the disorderly flow of charging and discharging energy,and enhance the ability of the power grid to deal with abnormal indicators.
分 类 号:TM910[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28