胰腺癌患者预后预测动态在线列线图的构建及应用  被引量:6

Construction and application of online dynamic nomogram for predicting prognosis of pancreatic cancer patients

在线阅读下载全文

作  者:施华清 柴长鹏 陈洲 董仕 何茹 秦子顺[3] 周文策[2,4] SHI Huaqing;CHAI Changpeng;CHEN Zhou;DONG Shi;HE Ru;QIN Zishun;ZHOU Wence(The Second Clinical Medical College,Lanzhou University,Lanzhou 730030,China;The First Clinical Medical College,Lanzhou University,Lanzhou 730000,China;School of Stomatology,Lanzhou University,Lanzhou 730000,China;Department of General Surgery,Lanzhou University Second Hospital,Lanzhou 730030,China)

机构地区:[1]兰州大学第二临床医学院,甘肃兰州730030 [2]兰州大学第一临床医学院,甘肃兰州730000 [3]兰州大学口腔医学院,甘肃兰州730000 [4]兰州大学第二医院普通外科,甘肃兰州730030

出  处:《中国普通外科杂志》2022年第9期1162-1172,共11页China Journal of General Surgery

基  金:甘肃省中医药科研课题基金资助项目(GZKP-2020-28);甘肃省兰州市城关区科技计划基金资助项目(2020-2-11-4)。

摘  要:背景与目的:胰腺癌具有高度侵袭性,患者的预后很差,与其他癌症不同,在过去的几年中,胰腺癌的发病率继续增加,存活率几乎没有提高。目前临床上使用的TNM分期系统来评估患者预后指标较为单一。因此,本研究的目的是构建一个动态的在线列线图,用于预测胰腺癌患者预后,为临床个体化治疗提供参考。方法:从SEER数据库中提取了2000—2018年病理确诊为胰腺癌的患者信息,并按7∶3的比例随机分为训练队列与验证队列。采用单因素和多因素的Cox回归分析来确定预后风险因素,并使用R软件构建动态在线列线图。使用C-指数、与时间相关ROC曲线的曲线下面积(AUC)、校准曲线和决策曲线分析(DCA)来评估列线图的临床效用。根据列线图再将患者分为高风险组和低风险组,通过KaplanMeier生存曲线比较两组患者的预后。结果:共在SEER数据库中筛选出12 175例胰腺癌患者,年龄、肿瘤分化程度、原发部位、T分期、N分期、M分期、手术、化疗和肿瘤大小是总生存期(OS)的独立影响因素(均P<0.05)。在训练队列中,与OS相关列线图的C-指数为0.759 (95%CI=0.745~0.772),预测1、3、5年OS的AUC分别为0.828、0.842和0.849。在验证队列中,C-指数为0.756 (95%CI=0.735~0.776),1、3、5年OS的AUC分别为0.820、0.831和0.842。校准图和DCA曲线显示了该模型在训练和验证队列中有良好预测性能。KaplanMeier生存曲线显示,在验证集和训练集中,低风险组患者的总OS优于高风险组(均P<0.05)。结论:建立的动态在线列线图有良好预测性能,有助于个性化结合临床患者实际情况综合预测胰腺癌患者的预后,并可能比TNM分期系统具有更好的临床应用价值。Background and Aims:Pancreatic cancer is a highly aggressive malignancy and patients with pancreatic cancer will face a dismal prognosis.Unlike other cancers,the incidence of pancreatic cancer has continued to increase over the past few years with little improvement in survival rates.The prognostic indicators of the TNM staging system currently used in clinical practice to assess the prognosis of patients are relatively limited.Therefore,this study was designed to construct a dynamic online nomogram for clinical prediction of prognosis of pancreatic cancer patients,so as to provide guidance for clinical individualized treatment.Methods:Information of patients with pancreatic cancer from 2000 to 2018 was extracted from the SEER database,and patients were randomly allocated to the training cohort and validation cohort at a ratio of 7∶3.Univariate and multivariate Cox regression analyses were used to identify the prognostic risk factors,and dynamic online nomogram was constructed using R software.The C-index,area under the curve(AUC) of time-dependent ROC curves,calibration plot,and decision curve analysis(DCA) was used to assess the clinical utility of the nomogram.Finally,the pancreatic cancer patients were divided into high-risk and low-risk groups according to the nomogram,and the prognostic results of the two groups of patients were compared by Kaplan-Meier survival curves.Results:A total of 12 175 patients with pancreatic cancer were screened.Age,degree of tumor differentiation,primary tumor site,T stage,N stage,M stage,surgery,chemotherapy,and tumor size were independent influencing factors for OS(all P<0.05).In the training cohort,the C-index for the OS nomogram was 0.759(95% CI=0.745-0.772),and the AUC values for predicting the 1-,3-and 5-year OS were 0.828,0.842,and 0.849,respectively.In the validation cohort,the C-index was 0.756(95% CI=0.735-0.776),and the AUC values for predicting the 1-,3-and 5-year OS were 0.820,0.831,and 0.842,respectively.The calibration plot and DCA curves demonstrated good predi

关 键 词:胰腺肿瘤 预后 列线图 模型 统计学 

分 类 号:R736.7[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象