基于R/S分析的大藤峡出山径流灰色预测  被引量:2

Grey Prediction of Mountainous Runoff of Datengxia Based on R/S Analysis

在线阅读下载全文

作  者:崔延华 王理 吴文强[3] CUI Yanhua;WANG Li;WU Wenqiang(Guangxi Datengxia Gorge Water Conservancy Development Co.,Ltd.,Nanning 530000,China;Bureau of Hydrology and Water Resources,Pearl River Water Resources Commission of Ministry of Water Resources,Guangzhou 510611,China;China Institute of Water Resources and Hydropower Research,Beijing 100038,China)

机构地区:[1]广西大藤峡水利枢纽开发有限责任公司,广西南宁530000 [2]水利部珠江水利委员会水文局,广东广州510611 [3]中国水利水电科学研究院,北京100038

出  处:《人民珠江》2022年第10期120-125,共6页Pearl River

摘  要:灰色预测模型在地表水文序列的研究中被广泛应用,但在大藤峡出山径流的研究中还未见到。针对大藤峡1932—2021年出山径流的逐年实测资料,首先构建GM(1,1)灰色预测模型,然后进行R/S分形分析,计算出大藤峡出山径流序列的Hurst指数和平均循环周期T,之后在一个周期T内运用R/S-GM(1,1)模型进行大藤峡出山径流灰色预测。结果表明:大藤峡出山径流的循环周期T为9年,GM(1,1)模型和R/S-GM(1,1)模型的模型精度分别为84.38%和87.46%,预测精度分别为86.28%和92.54%,基于R/S分形分析后的R/S-GM(1,1)灰色预测的精度显著高于直接进行GM(1,1)灰色预测。该方法为大藤峡出山径流的科学预测提供了一种新途径。Grey prediction model has been widely used in studies on surface hydrological series,but it has not been mentioned in studies on the mountainous runoff of Datengxia.According to the annual measured data of mountainous runoff of Datengxia from 1932 to 2021,the GM(1,1) grey prediction model is established first.Then R/S analysis is carried out to calculate the Hurst index and the average cycle period T of the mountainous runoff series of Datengxia.After that,the grey prediction of the mountainous runoff of Datengxia is performed within a cycle T based on R/S-GM(1,1) model.The results show that the cycle period T of the mountainous runoff of Datengxia is nine years,and the model accuracy of GM(1,1) and R/S-GM(1,1) models is 84.38% and 87.46%,respectively,with a prediction accuracy of 86.28% and 92.54%,respectively.The grey prediction accuracy of R/S-GM(1,1) model is significantly higher than that of GM(1,1) model.This method has provided a new method for scientifically predicting the mountainous runoff of Datengxia.

关 键 词:灰色预测 R/S分形分析 GM(1 1)模型 R/S-GM(1 1)模型 出山径流 大藤峡 

分 类 号:TV121[水利工程—水文学及水资源]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象