AKNS孤子族对应系统的哈密尔顿双可积耦合  

Hamiltonian Bi-integrable Couplings for the Counterpart of the AKNS Soliton Hierarchy

在线阅读下载全文

作  者:王蕾[1] 唐亚宁[2] WANG Lei;TANG Yaning(School of Mathematics and Statistics,Taiyuan Normal University,Jinzhong 030619,China;School of Mathematics and Statistics,Northwestern Polytechnical University,Xi’an 710129,China)

机构地区:[1]太原师范学院数学与统计学院,山西晋中030619 [2]西北工业大学数学与统计学院,陕西西安710129

出  处:《应用数学》2022年第4期827-834,共8页Mathematica Applicata

基  金:Supported in part by the National Natural Science Foundation of China(11401424);the Natural Science Foundation of Shanxi province(201901D211423);the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi(2019L0783);the Teaching Reform project of Taiyuan Normal University(JGLX2128)。

摘  要:基于半直和李代数的零曲率方程,应用一族非半单矩阵李代数构建的块矩阵构建了AKNS孤子族对应系统的双可积耦合及其哈密尔顿结构.Based on zero curvature equations from semi-direct sums of Lie algebras,we construct bi-integrable couplings for the counterpart of the AKNS soliton hierarchy and their Hamiltonian structures by applying a class of non-semisimple matrix loop algebras consisting of triangular block matrices.

关 键 词:半直和李代数 零曲率方程 双可积耦合 哈密尔顿结构 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象