检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:覃羡烘 QIN Xian-hong(Intelligent Manufacturing College,Guangdong Technology College,Zhaoqing 526100,China)
机构地区:[1]广东理工学院智能制造学院,广东肇庆526100
出 处:《控制工程》2022年第9期1679-1687,共9页Control Engineering of China
基 金:国家自然科学基金资助项目(61572142,61370082)。
摘 要:针对欠驱动三维桥式起重机控制策略难以在微控制器资源受限的条件下进行验证,以及传统分层滑模控制策略难以在不确定性条件下进行准确控制的问题,提出了基于径向基神经网络的三维桥式起重机自适应分层滑模控制策略。首先,基于分层滑模控制方法构建起重机全驱动和欠驱动子系统的一阶滑模面;然后,将一阶滑模面进行线性组合,形成第二阶滑模面;进一步,利用径向基函数神经网络对控制参数进行自适应估计并更新滑模面,提高不确定性条件下控制策略的鲁棒性。最后,通过仿真分析和物理实验验证了所提自适应分层滑模控制策略的有效性。The control strategy of underactuated three-dimensional overhead crane is difficult to verify under the condition of limited microcontroller resources, and the traditional hierarchical sliding mode control strategy is difficult to implement accurately under the condition of uncertainty. To tackle the above problems, an adaptive hierarchical sliding mode control strategy for three-dimensional overhead crane based on radial basis function neural network is proposed. Firstly, the first-order sliding surface of the actuated and underactuated subsystems of the three-dimensional crane is constructed based on the hierarchical sliding mode control method.Then, the first-order sliding surface is linearly combined to form the second-order sliding surface. Furthermore,the radial basis function neural network is used to adaptively estimate the control parameters and update the sliding surface to improve the robustness of the control strategy under the condition of uncertainty. Finally, the effectiveness of the proposed adaptive hierarchical sliding mode control strategy is verified by simulation analysis and physical experiments.
关 键 词:桥式起重机 自适应分层滑模控制 神经网络 径向基函数
分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.10.218