基于智能手机的LSTM室内定位算法研究  被引量:2

Research on Indoor Location Algorithm of LSTM Based on Smart Phone

在线阅读下载全文

作  者:高丽丽[1] 赵怡焯 GAO Li-li;ZHAO Yi-zhuo(School of Information Engineering,Inner Mongolia University of Science and Technology,Baotou Inner Mongolia 014010,China)

机构地区:[1]内蒙古科技大学信息工程学院,内蒙古包头014010

出  处:《计算机仿真》2022年第9期525-531,共7页Computer Simulation

摘  要:随着智能手机的快速发展,使用智能手机进行室内定位成为近几年的研究热点之一。使用智能手机进行定位时,针对单纯MEMS惯导推算误差发散速度过快和累积误差会造成定位精度过低的问题,建立了行人运动曲率模型,提出了一种融和卡尔曼滤波和长短时记忆网络(LSTM)的是高精度定位算法。方法包含:使用手机内置传感器采集加速度传感器和陀螺仪数据,建立数据集。利用卡尔曼滤波剔除陀螺仪数据中高斯白噪声,建立LSTM深度神经网络模型预测陀螺仪数据,抑制数据中含有的常值漂移。通过实验验证表明:相比于直接使用MEMS传感器数据进行定位,基于LSTM的室内定位方法可以明显提高定位精度,平均误差在1.33M,满足了人们位置服务需求。With the rapid development of smart phones, indoor positioning using smart phones has become one of the research hotspots in recent years. When using a smart phone for positioning, in view of the problem of too fast divergence of the error divergence and the accumulated error of the simple MEMS inertial navigation, the positioning accuracy will be too low. This paper establishes a pedestrian motion curvature model. Based on this model, a fusion of Karl Mann filtering and long short-term memory network(LSTM) are high-precision positioning algorithms. The method includes: using the built-in sensor of the mobile phone to collect acceleration sensor and gyroscope data and establish a data set. The Kalman filter is used to eliminate the Gaussian white noise in the gyroscope data, and the LSTM deep neural network model is established to predict the gyroscope data and suppress the constant drift contained in the data. Experimental verification shows that compared to directly using MEMS sensor data for positioning, the indoor positioning method based on LSTM can significantly improve the positioning accuracy, with an average error of 1.33 M,which meets the needs of people’s location services.

关 键 词:室内定位 长短时记忆 网络 智能手机 传感器 

分 类 号:TP389.1[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象