检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闫晓东 常天庆 郭理彬 YAN Xiaodong;CHANG Tianqing;GUO Libin(Weapon and Control Department,Army Academy of Armored Forces,Beijing 100072,China)
机构地区:[1]陆军装甲兵学院兵器与控制系,北京100072
出 处:《兵器装备工程学报》2022年第10期288-293,共6页Journal of Ordnance Equipment Engineering
摘 要:针对已知起点和终点无人车在越野战场环境下自主进行路径规划的问题,综合考虑越野地形环境特点、敌方兵力兵器性能及分布、无人车机动性能等因素的影响,根据越野地形环境特点构建三维高程模型和坡度模型,根据敌方兵力分布和毁伤性能构建战场威胁人工势场模型,根据无人车机动性能构建地面可通性模型,并在传统A^(*)路径规划算法的基础上提出了针对越野战场环境的路径规划算法。仿真结果表明:在相同的条件下该算法规划出的路径具有总路程短、坡度起伏小、遭受敌方威胁程度小等优点,能够满足作战的基本要求,对于提高地面无人装备的自主化程度具有应用价值。Aiming at the problem of how to plan the path independently in the off-road battlefield environment when the starting point and end point are known, considering the influence of off-road terrain environment, the performance and distribution of enemy forces and weapons, and the mobility of unmanned vehicles comprehensively, the three-dimensional elevation model and slope model were constructed according to the characteristics of off-road terrain environment, the artificial potential field model of battlefield threat was constructed according to the enemy force distribution and damage performance, and the ground accessibility model was constructed according to the maneuverability of unmanned vehicle. Based on the traditional A^(*) path planning algorithm, a path planning algorithm for off-road battlefield environment was proposed.The simulation results show that under the same conditions, the path planned by the algorithm has the advantages of short total distance, small slope fluctuation and low threat from the enemy, and can meet the basic requirements of operation. It has certain application value for improving the degree of autonomy of ground unmanned equipment.
关 键 词:路径规划 越野地形 敌情威胁 A^(*)算法 人工势场 无人作战
分 类 号:TJ01[兵器科学与技术—兵器发射理论与技术] TJ765
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229