检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:余萍[1,2] 宋祥宇 YU Ping;SONG Xiang-yu(Department of Electronic and Communication Engineering,North China Electric Power University,Baoding 071003,China;Hebei Key Laboratory of Power Internet of Things Technology,North China Electric Power University,Baoding 071003,China)
机构地区:[1]华北电力大学电子与通信工程系,保定071003 [2]华北电力大学河北省电力物联网技术重点实验室,保定071003
出 处:《科学技术与工程》2022年第28期12449-12459,共11页Science Technology and Engineering
基 金:深圳供电局有限公司科技项目(090000KK52180035)。
摘 要:近年来,可视化设备应用的普及,使得目前图像信息资源庞大,图像信息作为一种极为重要的信息,它与整个人类的生活息息相关。同时,中国工程建设行业蓬勃发展,使得施工现场数目迅速增加,施工安全问题的重要性成为亟需解决的问题,如何充分利用目前已有信息资源实现由于围栏摆放不合规导致的施工安全隐患的检测与告警,提出了一种基于Open CV的围栏合规性摆放检测方法。利用Open CV对目前电力施工现场可视化设备所收集的海量视频图像信息,对于施工现场围栏摆放的合规性进行检测。通过对于施工现场图片的处理,首先对于图象中目标围栏部分进行预处理,并通过连通区域分析算法与区域生长算法相结合,实现对于该围栏群围栏部分的提取以及缺口存在性的初步判断,然后训练专用于检测围栏缺口的分类器对于存在缺口的围栏群进行再次检测,并对检测结果中缺口数量进行统计。通过对于测试集样本进行检测,分析分类器检测结果,总结并解决分类器检测结果不准确的问题,对分类器重新训练并优化,最终该算法可以实现对于围栏摆放合规性的判断。通过一系列图像处理算法的应用以及专用分类器的训练,以缺口数量作为判断围栏摆放是否合规的突破口,首次实现了使用Open CV对电力施工现场围栏群摆放是否合规的检测,并为该类特征模糊物体的检测拓展了思路。In recent years,the popularization of the application of visualization equipment has made a huge image information resources.As an extremely important information,image information is closely related to the whole human life.At the same time,the vigorous development of China's engineering construction industry has led a rapid increase in the number of construction sites,and the importance of construction safety has become an urgent problem to be solved.How to make full use of existing information resources to realize the detection and warning of hidden dangers in construction safety caused by non-compliant fence placement.A method for detecting compliance of fences based on Open CV was proposed.Open CV was used to detect the compliance of the construction site fence placement on the massive video image information collected by the current power construction site visualization equipment.Through the processing of the construction site pictures,the target fence part in the image was first preprocessed,and the connected area analysis algorithm was combined with the region growth algorithm to realize the extraction of the fence part of the fence group and the preliminary judgment of the existence of the gap.Then,a classifier dedicated to detecting fence gaps was trained to re-detect the fence groups with gaps,and the number of gaps in the detection results was counted.By testing the samples of the test set,analyzing the detection results of the classifier,summarizing and solving the problem of inaccurate detection results of the classifier,and retraining and optimizing the classifier,the algorithm can finally realize the judgment of the compliance of fence placement.Through the application of a series of image processing algorithms and the training of special classifiers,the number of gaps is used as a breakthrough for judging whether the fences are placed in compliance.It expands the idea for the detection of such characteristic fuzzy objects.
关 键 词:可视化应用 Open CV 连通区域分析 区域生长 分类器
分 类 号:TM769[电气工程—电力系统及自动化] TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38