基于粒子群算法的中压配电线路节能改造  被引量:1

Energy-Saving Transformation of Medium Voltage Distribution Lines Based on Particle Swarm Algorithm

在线阅读下载全文

作  者:吴胜 WU Sheng(Suzhou Sanxin Power Supply Service Co.,Ltd.,Changshu Branch Yubei Business Office,Changshu 215500,China)

机构地区:[1]苏州三新供电服务有限公司常熟分公司虞北业务所,江苏常熟215500

出  处:《通信电源技术》2022年第12期4-6,共3页Telecom Power Technology

摘  要:为了降低中压配电线路损耗电能,实现配网线路节能,基于粒子群算法对中压配电线路进行节能改造。利用均方根电流法获取线路损耗电流,计算架空线路与电缆线路的损耗电能,作为节能改造数学模型的数据基础,通过目标函数建立线路节能降损的数学模型,基于粒子群算法求解模型,实现中压配电线路的节能改造。在中压配电网多个台区中进行节能改造实验,应用所提方法节能改造后各台区的平均功率因数提升了52.8%,验证了所提方法的可行性。通过与其他方法的线路损耗电能对比发现,所提方法下的每日平均损耗的电能仅有45.5 kW·h,低于其他方法,表明所提方法的降损效果最好,节能效果最佳。In order to reduce the power loss of medium voltage distribution lines and realize the energy saving of distribution lines,this paper carries out energy-saving transformation of medium voltage distribution lines based on particle swarm optimization algorithm.The line loss current is obtained by using the root mean square current method,and the loss energy of overhead lines and cable lines is calculated as the data basis of the mathematical model of energysaving transformation.The mathematical model of line energy conservation and loss reduction is established through the objective function,and the model is solved based on particle swarm optimization algorithm to realize the energy-saving transformation of medium voltage distribution lines.The energy-saving transformation experiment is carried out in several stations of the medium voltage distribution network.After the energy-saving transformation,the average power factor of each station is increased by 52.8%,which verifies the feasibility of this method.Through the comparison of line loss electric energy between this method and other methods,it is found that the daily average loss electric energy under this method is only 45.5 kW·h.It is lower than other methods,which shows that this method has the best loss reduction effect and energy saving effect.

关 键 词:粒子群算法 中压配电网 线路损耗 节能改造 

分 类 号:TM715[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象