检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《安阳师范学院学报》2022年第5期42-46,共5页Journal of Anyang Normal University
基 金:安徽省高等学校人文社会科学研究项目(项目编号:SK2017A0481);巢湖学院横向课题“基于大数据的物流管理系统设计和开发”(项目编号:hxkt20210001);巢湖学院2018年度校级科研项目“基于RMS模式的古镇旅游产品同质化研究”(项目编号:XWY-201801)。
摘 要:为了提高铁路货运量的预测精度,针对长短期记忆神经网络性能受隐含层神经元数量、分块尺寸、最大训练周期数以及学习率的影响,提出一种基于改进的蜻蜓算法优化LSTM(Improved DA-LSTM)的铁路货运量预测模型。首先,为提高蜻蜓算法的收敛速度和避免局部最优问题,提出一种佳点集初始化种群的改进蜻蜓算法。其次,为提高LSTM模型的性能,运用改进的蜻蜓算法优化选择LSTM模型参数并进行铁路货运量预测。选择我国2001—2019年铁路货运量数据为研究对象,与DA-LSTM、GA-LSTM、PSO-LSTM、LSTM和BPNN相比,Improved DA-LSTM铁路货运量预测模型预测精度分别提高了0.6642%、0.6776%、1.2038%、1.3853%和2.0466%。
关 键 词:蜻蜓算法 长短期记忆 铁路货运量 佳点集 神经网络
分 类 号:U294.13[交通运输工程—交通运输规划与管理] TP183[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222