基于GS-SVR模型的空腔积水水深和长度预测  被引量:1

Prediction of backwater depth and cavity length based on GS-SVR model

在线阅读下载全文

作  者:郭港归 李国栋[1] 魏杰 王立杰 GUO Ganggui;LI Guodong;WEI Jie;WANG Lijie(State key Laboratory of Eco-hydraulics in Northwest Arid Region of China,Xi’an 710048,China;POWERCHINA Zhongnan Engineering Corporation Limited,Changsha 410014,China)

机构地区:[1]西安理工大学西北旱区生态水利国家重点实验室,陕西西安710048 [2]中国电建集团中南勘测设计研究院有限公司,湖南长沙410014

出  处:《水利水电科技进展》2022年第6期105-110,共6页Advances in Science and Technology of Water Resources

基  金:国家自然科学基金(51579206)。

摘  要:为描述掺气减蚀工程中的空腔积水水深、空腔长度与诸多影响因素的非线性关系,实现空腔积水水深和空腔长度的准确计算,在搜集162组试验数据的基础上,建立了支持向量机回归(GS-SVR)模型。通过网格搜索和交叉验证方法,研究了GS-SVR模型中超参数(C和γ)的相互关系和其对GS-SVR模型预测准确度的影响机制,分析了6种不同输入组合(共12组)的模型性能。结果表明:通过网格搜索可以找到模型性能最佳的区域,该区域中C和γ呈现相反的增长趋势;基于上述方法找到了最佳变量组合(i_(1),i_(2),Fr,Δ/h),并且实现了对掺气坎空腔长度和空腔积水水深的精准预测。In order to describe the nonlinear relationship between the cavity backwater depth,cavity length and many influencing factors in aeration erosion reduction projects,and to achieve the accurate calculation of backwater and cavity length,a support vector machine regression model(GS-SVR)by means of machine learning was established based on the collection of 162 sets of model experimental data.Through the method of grid search and cross-validation,the relationship between the hyperparameters(C and γ)in the support vector machine model and its influence mechanism on the accuracy of the model’s prediction were studied.On this basis,the model performance of six different input combinations(a total of twelve groups)was analyzed.The results show that the region with the best model performance can be found through grid search.In this region,C andγshow the opposite growth trend.Based on the above method,the optimal variable combination can be found(i_(1),i_(2),Fr,Δ/h)and the accurate prediction of the cavity length and the backwater depth is realized.

关 键 词:空腔积水水深 空腔长度 网格搜索 支持向量机 超参数 

分 类 号:TV135.2[水利工程—水力学及河流动力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象