检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈诺 祁树仁 张玉书 薛明富[1] 花忠云 CHEN Nuo;QI Shuren;ZHANG Yushu;XUE Mingfu;HUA Zhongyun(College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;College of Computer Science and Technology,Harbin Institute of Technology,Shenzhen 518055,China)
机构地区:[1]南京航空航天大学计算机科学与技术学院,江苏南京211106 [2]哈尔滨工业大学(深圳)计算机科学与技术学院,广东深圳518055
出 处:《网络与信息安全学报》2022年第5期167-178,共12页Chinese Journal of Network and Information Security
基 金:南京航空航天大学研究生科研与实践创新计划项目(xcxjh20211606)。
摘 要:图像重着色是一种新兴的图像编辑技术,通过篡改像素值达到改变图像颜色风格的目的。随着社交网络和图像编辑技术的快速发展,重着色图像已经严重阻碍了信息传达的真实性。然而,专门为重着色而设计的工作少之又少,现有的重着色检测方法在传统重着色场景下仍有很大提升空间,在应对手工重着色图像时效果不佳。为此,提出了一种基于通道间相关性的重着色图像检测方法,该方法适用于重着色任务中的传统重着色和手工重着色场景。基于相机成像和重着色图像生成方式之间存在显著差异这一现象,提出重着色操作或许会破坏自然图像的通道间相关性这一假设。通过数值分析说明,通道间相关性差异可作为区分重着色图像和自然图像的重要鉴别度量。基于上述先验知识,所提方法通过提取差分图像的一阶微分残差的通道共生矩阵,获得图像的通道间相关性特征集。此外,根据实际情况,假设了3种检测场景,包括训练-测试数据之间匹配、不匹配以及手工重着色场景。实验结果表明,所提方法能够准确识别重着色图像,在假设的3种场景下均优于现有方法,取得了较高的检测精度。除此之外,所提方法对训练数据量的依赖性较小,在训练数据有限的情况下,能实现相当精确的预测结果。Image recoloring is an emerging editing technique that can change the color style of an image by modifying pixel values.With the rapid proliferation of social networks and image editing techniques,recolored images have seriously hampered the authenticity of the communicated information.However,there are few works specifically designed for image recoloring.Existing recoloring detection methods still have much improvement space in conventional recoloring scenarios and are ineffective in dealing with hand-crafted recolored images.For this purpose,a recolored image detection method based on inter-channel correlation was proposed for conventional recoloring and hand-crafted recoloring scenarios.Based on the phenomenon that there were significant disparities between camera imaging and recolored image generation methods,the hypothesis that recoloring operations might destroy the inter-channel correlation of natural images was proposed.The numerical analysis demonstrated that the inter-channel correlation disparities can be used as an important discriminative metric to distinguish between recolored images and natural images.Based on such new prior knowledge,the proposed method obtained the inter-channel correlation feature set of the image.The feature set was extracted from the channel co-occurrence matrix of the first-order differential residuals of the differential image.In addition,three detection scenarios were assumed based on practical situations,including scenarios with matching and mismatching between training-testing data,and scenario with hand-crafted recoloring.Experimental results show that the proposed method can accurately identify recolored images and outperforms existing methods in all three hypothetical scenarios,achieving state-of-the-art detection accuracy.In addition,the proposed method is less dependent on the amount of training data and can achieve fairly accurate prediction results with limited training data.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117