检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张田华 张怡 谢晓金 ZHANG Tianhua;ZHANG Yi;XIE Xiaojin(School of Mathematics,Physics and Statistics,Shanghai University of Engineering Science,Shanghai 201620,China)
机构地区:[1]上海工程技术大学数理与统计学院,上海201620
出 处:《上海工程技术大学学报》2022年第2期218-223,共6页Journal of Shanghai University of Engineering Science
基 金:全国统计科学研究一般项目资助(2020LY067);浦东新区科技发展基金产学研专项资金(人工智能)项目资助(PKX2020-R02);上海工程技术大学研究生科研创新项目资助(20KY2101)。
摘 要:我国信用不良的企业数量远小于信用良好的企业数量,样本类别的极端不平衡导致传统的信用评估模型在训练时无法充分学习信用不良企业的特征.为提高极端梯度提升算法(Extreme Gradient Boosting,XGBoost)在企业信用评估这种不平衡分类问题中的准确率,提出一种基于代价敏感XGBoost的企业信用评估模型.在XGBoost算法拟合过程中,加入代价敏感损失函数迫使模型更加关注少数类的特征,并引入贝叶斯优化调整模型的重要超参数.以我国A股市场中小板块企业2016—2020年数据为样本,实证结果表明,基于代价敏感XGBoost的企业信用评估模型能够在保证总体识别精度的情况下提高对信用不良企业的识别准确率.In China,the number of enterprises with bad credit is much smaller than that of enterprises with good credit.The extreme imbalance of sample categories results in the traditional credit evaluation model unable to fully learn the characteristics of bad credit enterprises during training.In order to improve the accuracy of extreme gradient boosting(XGBoost)in unbalanced classification problems such as enterprise credit evaluation,an enterprise credit evaluation model based on cost sensitive XGBoost was proposed.In the process of XGBoost algorithm fitting,the cost sensitive loss function was added to force the model to pay more attention to the characteristics of minority classes,and the bayesian optimization was introduced to adjust the hyperparameters of the model.Taking the datas of small and medium-sized enterprises in China's A-share market from 2016 to 2020 as the sample,the experimental results show that the enterprise credit evaluation model based on cost sensitive XGBoost can improve the identification accuracy of bad credit enterprises while ensuring the overall identification accuracy.
关 键 词:损失函数 极端梯度提升算法 代价敏感 企业信用评估
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7