基于多尺度多分支特征的动作识别  

Action recognition algorithm based on multi-scale and multi-branch features

在线阅读下载全文

作  者:张磊[1,2] 韩广良 ZHANG Lei;HAN Guang-liang(Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Acadamy of Sciences,Changchun 130033,China;University of Chinese Acadamy of Sciences,Beijing 100049,China)

机构地区:[1]中国科学院长春光学精密机械与物理研究所,吉林长春130033 [2]中国科学院大学,北京100049

出  处:《液晶与显示》2022年第12期1614-1625,共12页Chinese Journal of Liquid Crystals and Displays

基  金:吉林省科技厅重点项目(No.20210201132GX)。

摘  要:针对基于人体骨架序列的动作识别存在的特征提取不充分、不全面及识别准确率不高的问题,本文提出了基于多分支特征和多尺度时空特征的动作识别模型。首先,利用多种算法的结合对原始数据进行了特征增强;其次,将多分支的特征输入形式改进为多分支的融合特征信息并分别输入到网络中,经过一定深度的网络模块后融合在一起;然后,构建多尺度的时空卷积模块作为网络的基本模块,用来提取多尺度的时空特征;最后,构建整体网络模型输出动作类别。实验结果表明,在NTURGB-D 60数据集的两种划分标准Cross-subject和Cross-view上的识别准确率分别为89.6%和95.1%,在NTURGB-D 120数据集的两种划分标准Cross-subject和Cross-setup上的识别准确率分别为84.1%和86.0%。与其他算法相对比,本文算法提取到了更为多样化、多尺度的动作特征,动作类别的识别准确率有一定的提升。Aiming at the problems of insufficient feature extraction,incompleteness and low recognition accuracy in action recognition based on human skeleton sequence,a action recognition model based on multibranch feature and multi-scale spatio-temporal feature is proposed in this paper.Firstly,the original data are enhanced by the combination of various algorithms.Secondly,the multi-branch feature input form is improved to multi-branch fusion feature information,which is input into the network,respectively.After a certain depth of network modules,it is fused together.Then,a multi-scale spatio-temporal convolution module is constructed as the basic module of the network to extract multi-scale spatio-temporal features.Finally,the overall network model is constructed to output action categories.The experimental results show that the recognition accuracy on Cross-subject and Cross-view of NTU RGB-D 60 data set is 89.6%and 95.1%,and the recognition accuracy on Cross-subject and Cross-setup of NTU RGB-D 120 data set is 84.1%and 86.0%,respectively.Compared with other algorithms,the more diversified and multi-scale action features are extracted,and the recognition accuracy of action categories is improved to a certain extent.

关 键 词:动作识别 多尺度特征 多分支特征 特征融合 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象