检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李博彤 李明睿 刘梦晴 Li Botong;Li Mingrui;Liu Mengqing(State Grid Jibei Electric Power Co.,Ltd.,Beijing 100054,China;School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China;College of Management and Economics,Tianjin University,Tianjin 300072,China)
机构地区:[1]国网冀北电力有限公司,北京100054 [2]天津大学电气自动化与信息工程学院,天津300072 [3]天津大学管理与经济学部,天津300072
出 处:《电测与仪表》2022年第11期79-87,共9页Electrical Measurement & Instrumentation
基 金:国家重点研发计划项目(2018YFA0702200)。
摘 要:光伏发电的短期预测对电网稳定运行、经济调度和可再生能源调节具有重要意义。但光伏功率输出受辐射强度、温度等气象因素影响,具有较大的波动性和随机性。为了提高预测精度和不同天气类型的普适性,文章提出了一种基于支持向量回归结合相空间重构和相似日选择的混合光伏输出预测算法。采用通径系数分析对历史数据集进行处理,量化光伏出力和气象因子的相关性,并确定主导气象因子作为相似日选择的标准。随后,利用相空间重构技术对非线性光伏功率时间序列进行处理,抑制了原始数据集的混沌特性。用实际数据验证了该算法的预测有效性。结果表明,与传统的支持向量回归模型相比,文中的预测模型可以进一步提高预测精度。此外,文中算法在晴天和阴雨天的情况下都表现出良好的性能。The short-term forecast of photovoltaic power generation is important for grid stable operation,economic dispatch,and renewable energy accommodation.However,photovoltaic power output is influenced by meteorological factors such as radiation intensity and temperature,etc.,showing great volatility and randomness.In order to further improve the accuracy of prediction and the universality of different weather types,a hybrid photovoltaic output power forecast(HPF)algorithm based on support vector regression(SVR)combined with phase space reconstruction and similar day selection is proposed in this paper.The path coefficient analysis is used to process the historical data sets,quantify the correlation between photovoltaic output and meteorological factors,and the dominant meteorological factors are determined as the criteria for selecting similar days.And then,the phase space reconstruction technology is used to process the nonlinear photovoltaic power time series to suppress the chaotic characteristics of the original data set.The effectiveness of the proposed HPF algorithm is verified through using the real data.The results show that compared with the traditional support vector regression model,the prediction model proposed in this paper can further improve the prediction accuracy.Additionally,the algorithm in this paper also shows good performance under both sunny and rainy conditions.
关 键 词:光伏功率预测 通径系数分析 相空间重构 支持向量回归 时间序列
分 类 号:TM615[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.83.143