基于PBES-LS-SVM的锂离子电池组SOC预测  被引量:7

SOC prediction of Li-ion battery pack based on PBES-LS-SVM

在线阅读下载全文

作  者:李晟延 马鸿雁 窦嘉铭 王帅 LI Shengyan;MAHongyan;DOU Jiaming;WANG Shuai(School of Electrical and Information Engineering,Beijing University of Civil Engineering and Architecture,Beijing 100044,China;National Virtual Simulation Experimental Center for Smart City Education,Beijing 100044,China;Beijing Key Laboratory of Intelligent Processing for Building Big Data,Beijing 100044,China)

机构地区:[1]北京建筑大学电气与信息工程学院,北京100044 [2]建筑大数据智能处理方法研究北京市重点实验室,北京100044 [3]智慧城市国家级虚拟仿真实验教学中心,北京100044

出  处:《电源技术》2022年第11期1279-1283,共5页Chinese Journal of Power Sources

基  金:北京建筑大学博士基金项目(ZF15054)。

摘  要:针对锂离子电池组荷电状态(state of charge,SOC)难以预测的问题,提出应用主成分分析(principal component analysis,PCA)选取影响因素和秃鹰算法(bald eagle search,BES)优化最小二乘支持向量机(least squares support vector machine,LS-SVM)的SOC预测模型。首先,采用PCA筛选出主成分特征值较大的因素后,将其组成多输入样本集合;其次,利用秃鹰搜索算法的全局搜索能力不断优化最小二乘支持向量机的惩罚系数C、核函数g,建立PBESLS-SVM预测模型;最后,应用某储能设备历史数据,采用GA-BP、BES-SVM和PBES-LS-SVM等模型分别对锂离子电池组的完整放电过程数据集与部分放电过程数据集进行仿真研究。结果表明,提出的模型SOC预测均方根误差、平均绝对误差、平均绝对百分比误差分别减小至1.79%、1.30%和3.39%。与其余预测模型相比,PBES-LS-SVM模型预测精度高、预测时间短,具备良好的收敛性、泛化性。To address the problem that the state of charge(SOC)of lithium-ion battery pack was difficult to predict,principal component analysis(PCA)was applied to select the influencing factors and bald eagle search(BES)to optimize the least squares support vector machine(LS-SVM)for SOC prediction model.Firstly,the factors with large principal component eigenvalues were screened out using PCA and then composed into a multi-input sample set;secondly,the global search capability of the bald eagle search algorithm was used to continuously optimize the penalty coefficient C and kernel function g of the least squares support vector machine to establish the PBES-LS-SVM prediction model;finally,the historical data of an energy storage equipment was applied and the GA-BP,BES-SVM and PBES-LS-SVM models were applied to simulate the complete discharge process data set and partial discharge process data set of a lithium-ion battery pack,respectively.The results show that the root mean square error,mean absolute error,and mean absolute percentage error of SOC prediction of the models proposed are reduced to 1.79%,1.30%and 3.39%,respectively.Compared with the rest of the prediction models,the PBES-LS-SVM model has high prediction accuracy,short prediction time,and good convergence and generalization.

关 键 词:锂电池组 荷电状态 主成分分析 秃鹰搜索算法 最小二乘支持向量机 

分 类 号:TM912[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象