基于卷积神经网络的养殖鱼类品种识别模型  被引量:9

Recognition model of farmed fish species based on convolutional neural network

在线阅读下载全文

作  者:蔡卫明 庞海通 张一涛 赵建[3] 叶章颖[3] CAI Weiming;PANG Haitong;ZHANG Yitao;ZHAO Jian;YE Zhangying(School of Information Science and Engineering,Ningbo Tech University,Ningbo 315100,China;College of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China;College of Biosystems Engineering and Food Science,Zhejiang University,Hangzhou 310058,China)

机构地区:[1]浙大宁波理工学院,信息科学与工程学院,浙江宁波315100 [2]浙江大学,控制科学与工程学院,浙江杭州310027 [3]浙江大学,生物系统工程与食品科学学院,浙江杭州310058

出  处:《水产学报》2022年第8期1369-1376,共8页Journal of Fisheries of China

基  金:国家自然科学基金(31702393,32073028);宁波市公益性重点类科技计划项目(2019C10098);国家大宗淡水鱼产业技术体系专项(CARS-45-24)。

摘  要:随着机器学习、计算机视觉等技术的发展,卷积神经网络(CNN)越来越多地应用于图像识别领域,但现有的鱼类图像公共数据集资源较匮乏,难以满足深度CNN模型优化及性能提升的需要。实验以大黄鱼、鲤、鲢、秋刀鱼和鳙为对象,采用网络爬虫以及实验室人工拍照采集相结合的方式,构建了供鱼种分类的基础图片数据集,针对网络爬虫手段获取到的鱼类图像存在尺度不一、格式不定等问题,采用图像批处理的方式对所有获取到的图像进行了统一的数据预处理,并通过内容变换以及尺度变换对基础数据集做了数据增强处理,完成了7 993个样本的图像采集与归纳;在权值共享和局部连接的基础上,构建了一个用于鱼类识别的CNN模型,采用ReLU函数作为激活函数,通过dropout和正则化等方法避免过度拟合。结果显示,所构建的CNN鱼种识别模型具有良好的识别精度和泛化能力。随着迭代次数的增加,CNN模型的性能也逐步提高,迭代1 000次达到最佳,模型的准确率为96.56%。该模型采用监督学习的机器学习方式,基于CNN模型,实现了5种常见鱼类的鱼种分类,具有较高的识别精度和良好的稳定性,为养殖鱼类的品种识别提供了一种新的理论计算模型。With the development of artificial intelligence,big data,machine learning,computer vision and other technologies,convolutional neural network(CNN) is increasingly used in the field of image recognition,which greatly improves the efficiency and accuracy of recognition.Machine learning is data-driven and requires large amounts of data as a basis for experimentation.The richness and diversity of image data sets are crucial to the performance and expressive ability of convolutional neural network models.However,the existing fish image data set resources are relatively scarce,and the training set and test set samples are severely lacking.This makes it difficult to train neural network models,and it is difficult to meet the needs of deep convolutional neural network model optimization and performance improvement.A basic image data set for fish species classification was constructed by using a combination of web crawlers and manual camera collection in the laboratory.Larimichthys crocea,Hypophthalmichthys molitrix,Cyprinus carpio,Cololabis saira and Aristichthys nobilis were used as the test objects in this paper.First,we used web crawlers on the web to obtain pictures of these species of fish,and then,in a laboratory environment,we used cameras to take a large number of photos of these species of fish.In view of the problems of different scales and uncertain formats of images,image batch processing,unified data preprocessing was performed on all the acquired images,and the basic data set was enhanced through content transformation and scale transformation.The dataset was further enriched through this process and the image collection and induction of 7 993 samples were completed.On the basis of parameter sharing and local connectivity,a convolutional neural network model for fish recognition is constructed;the ReLU function was used as the activation function to improve the performance of the algorithm;the dropout and regularization were used to avoid overfitting.The test results showed that:the convolutional neural net

关 键 词:鱼类识别 卷积神经网络 图像识别 

分 类 号:S917[农业科学—水产科学] TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象