检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕超凡 言颖杰 林力[2,3] 柴岗 鲍劲松[1] Lü Chaofan;YAN Yingjie;LIN Li;CHAI Gang;BAO Jinsong(College of Mechanical Engineering,Donghua University,Shanghai 201620,China;Department of Plastic and Reconstructive Surgery,Shanghai Ninth People’s Hospital,Shanghai Jiao Tong University School of Medicine,Shanghai 200011,China;Institute of Forming Technology and Equipment,Shanghai Jiao Tong University,Shanghai 200030,China)
机构地区:[1]东华大学机械工程学院,上海201620 [2]上海交通大学医学院附属第九人民医院整复外科,上海200011 [3]上海交通大学塑性成形技术与装备研究院,上海200030
出 处:《上海交通大学学报》2022年第11期1509-1517,共9页Journal of Shanghai Jiaotong University
基 金:上海申康医院发展中心临床三年行动计划(SHDC2020CR3070B);上海市科学技术委员会项目(18DZ2201900,19441912300)。
摘 要:下颌角截骨手术是近年来较为热门的颅面整形手术.现阶段,下颌角截骨的术前方案设计通常由具有一定年资的医生完成,过程繁琐且耗时较长.为了提高截骨手术术前规划效率,提出一种基于点云语义分割网络的下颌角截骨面设计方法.对颅骨电子计算机断层扫描(CT)数据进行三维重建和表面点采样,将下颌骨三维模型转换为点云数据,然后通过基于Transformer的点云语义分割网络预测下颌骨点云中的截骨区域,最后根据点云分割结果计算出下颌角截骨平面.所提网络主要包括两个部分:一是基于注意力机制的本地特征提取层,用于提取细粒度局部结构信息;二是基于Transformer的非本地特征提取层,用于提取点云的全局上下文信息.在构建的下颌骨语义分割数据集上,将所提算法与其他点云语义分割算法进行比较.结果表明:所提算法能实现最佳的下颌角截骨区域预测,优于目前常见的点云语义分割算法.Mandibular angle osteotomy is a popular craniofacial plastic surgery in recent years. Usually, preoperative planning of mandibular angle osteotomy is completed by an experienced doctor, which is cumbersome and time-consuming. In order to improve the efficiency of osteotomy planning, a design method of mandibular angle osteotomy plane based on point cloud semantic segmentation network is proposed. After three-dimensional reconstruction of the skull computer tomography(CT) scan data, the three-dimensional model of the mandible is converted into point cloud data through uniform sampling. The resection area of the mandible is predicted by the proposed algorithm, which is used to calculate the mandibular angle osteotomy plane. The proposed semantic segmentation network mainly includes 2 parts: a local feature extraction layer based on the attention mechanism, which is used to extract fine-grained local structure information, and a non-local feature extraction layer based on Transformer, which is used to extract the global context information of the point cloud. On the constructed mandible semantic segmentation data set, the proposed algorithm is compared with other point cloud semantic segmentation algorithms. The results show that the proposed algorithm can achieve the best prediction of the mandibular angle resection area, which is better than current common point cloud semantic segmentation algorithms.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.189.143