基于卷积神经网络与门控循环单元的气液两相流流型识别方法  被引量:7

Flow Pattern Recognition of Gas-liquid Two-phase Flow Based on Convolutional Neural Network and Gated Recurrent Unit

在线阅读下载全文

作  者:张立峰[1] 王智 吴思橙 ZHANG Li-feng;WANG Zhi;WU Si-cheng(Department of Automation,North China Electric Power University,Baoding,Hebei 071003,China)

机构地区:[1]华北电力大学自动化系,河北保定071003

出  处:《计量学报》2022年第10期1306-1312,共7页Acta Metrologica Sinica

基  金:国家自然科学基金(61973115)。

摘  要:提出了一种基于卷积神经网络(CNN)与门控循环单元(GRU)的垂直管道气液两相流流型识别方法。该方法基于电阻层析成像(ERT)系统的重建图像,对其填充处理后进行离散余弦变换(DCT),求取最大、最小DCT系数的差值,选取一定帧数长度数据作为网络输入,对流型进行识别。分析了输入序列长度对CNN-GRU、CNN及GRU网络分类准确的影响,确定了最佳输入向量维度分别为60、65及50,使用实验数据对3种网络进行训练、测试,结果表明,CNN-GRU网络分类准确率最高,平均流型识别准确率可达99.40%。The method for identifying the flow pattern of gas-liquid two-phase flow in a vertical pipeline based on convolutional neural network(CNN)and gated recurrent unit(GRU)is presented in this paper.Based on the reconstructed image by the electrical resistance tomography(ERT)system,the discrete cosine transform(DCT)is performed after the filling processing.The difference between the maximum and minimum DCT coefficients is calculated,and a certain frame length data are selected as the network input to identify the flow pattern.The influence of the length of the input sequence on the accuracy of CNN-GRU,CNN and GRU network classification is analyzed,and the optimal input vector dimensions are determined to be 60,65 and 50.Using experimental data to train and test the CNN-GRU network,and compare it with the GRU and CNN networks,the results show that the CNN-GRU network has the highest classification accuracy,and the average flow pattern recognition accuracy rate can reach 99.40%.

关 键 词:计量学 流型识别 离散余弦变换 卷积神经网络 门控循环单元 电阻层析成像 

分 类 号:TB937[一般工业技术—计量学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象