三维图像在工具与枪弹痕迹中的应用现状分析  

Analysis of the Application of Three-dimensional Images in Tools and Bullet Marks

在线阅读下载全文

作  者:隋文浩 王伟 SUI Wenhao;WANG Wei

机构地区:[1]中国刑事警察学院,沈阳110854

出  处:《科技创新与应用》2022年第34期37-40,共4页Technology Innovation and Application

基  金:中国刑事警察学院研究生创新能力提升项目(2021YCYB30)。

摘  要:为进一步提升工具、枪弹痕迹等立体痕迹检验鉴定准确性、客观性,基于三维特征的检验鉴定技术研究成为国内外法庭科学领域研究的热点。该文系统介绍微观痕迹物证三维特征成像的相关技术原理,综述近年来关于三维图像在工具痕迹及枪弹痕迹中的研究成果。目前,在法庭科学领域中,痕迹三维特征的采集主要采用了原子力显微、三维共聚焦显微、白光干涉扫描、投影光栅相移测量和超景深三维立体显微5种技术,而图像预处理与重采集研究主要从图像缺失点补全及离群点去除、采集数据归一化与去噪3方面算法的选用展开。最后展望三维图像在工具与枪弹痕迹检验鉴定中应用的前景。In order to further improve the accuracy and objectivity of inspection and identification of tools, bullet marks and other three-dimensional traces, the research of inspection and identification technology based on three-dimensional features has become a hot topic in the field of forensic science at home and abroad. This paper systematically introduces the related technical principles of three-dimensional feature imaging of microscopic trace material evidence, and summarizes the research achievements of three-dimensional images in tool marks and bullet marks in recent years. At present, in the field of forensic science, the acquisition of three-dimensional features of traces mainly adopts five techniques: atomic force microscopy, three-dimensional confocal microscopy, scanning white light interference, projection grating phase shift measurement and three-dimensional display of super depth of field. The research of image preprocessing and re-acquisition is mainly carried out from three aspects: image missing point completion, outlier removal, acquisition data normalization and denoising. Finally, the prospect of the application of three-dimensional images in the inspection and identification of tools and bullet marks is prospected.

关 键 词:刑事技术 工具与枪弹痕迹 三维图像 特征提取 检验鉴定 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象