检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南中烟工业有限责任公司技术中心,湖南长沙410007 [2]湖南大学化学化工学院,湖南长沙410082
出 处:《农业与技术》2022年第22期10-14,共5页Agriculture and Technology
基 金:湖南中烟工业有限责任公司科技项目“基于烟叶表征数据与人工智能的卷烟叶组数字化配方技术研究”(项目编号:KY2020JC0034)。
摘 要:模型转移主要用来解决一台仪器上开发的模型应用于新场景进行预测的问题。化学计量学领域开发了大量的模型转移方法可以实现多元校正模型转移。然而,随着深度学习技术在光谱数据建模中的广泛应用,传统的多元校正模型转移方法已不适合处理基于神经网络结构的深度学习模型。因此,本文利用深度模型转移策略,将一台仪器上构建的烟粉深度学习模型迁移到新仪器上用于烟丝总糖含量的检测。结果表明,深度模型转移无需标准样品构建传递函数,即可实现对不同仪器、不同样品物理状态之间的准确预测,与重新建立的偏最小二乘(PLS)和卷积神经网络(CNN)模型相比,其预测均方根误差分别降低了33.2%和27.2%。无标样深度模型转移支持在不同应用实践之间广泛共享、扩展深度学习模型,具有较好的应用前景。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90