检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周宏宇[1] 王小刚[1] 单永志 赵亚丽 崔乃刚[1] ZHOU Hong-Yu;WANG Xiao-Gang;SHAN Yong-Zhi;ZHAO Ya-Li;CUI Nai-Gang(School of Astronautics,Harbin Institute of Technology,Harbin 150001;State-owned Factory No.624,Harbin 150030;Beijing Aerocim Technology Co.,Ltd.,Beijing 102308)
机构地区:[1]哈尔滨工业大学航天学院,哈尔滨150001 [2]国营六二四厂,哈尔滨150030 [3]北京航天晨信科技有限公司,北京102308
出 处:《自动化学报》2022年第11期2670-2676,共7页Acta Automatica Sinica
基 金:中国博士后科学基金(2019M661290)资助
摘 要:考虑气动、轨迹、约束、指标间的耦合关系,以多高超声速飞行器同时到达为目标建立了协同规划模型;设计了一种自动满足终端约束的全新滑翔飞行剖面,减少了规划算法需要处理的约束数量;推导了滑翔段高精度解析解,实现了过程约束和性能指标的快速求解;提出了一种改进粒子群优化(Particle swarm optimization,PSO)算法,借助强化学习方法构建协同需求与惯性权重间的动态映射网络,提高了在线规划效率.最后通过数学仿真验证了方法的正确性和有效性.This paper researches the synergistic flight for multiple hypersonic vehicles.The synergistic planning problem is formulated in view of the nonlinear coupling among aerodynamics,the performance index,and the path constraints.Then,the gliding profile,which naturally satisfies the terminal constraints and decreases the constraints,is proposed.Meanwhile,accurate solutions are deduced in the glide phase,so path constraints and the performance index can be quickly derived.An improved particle swarm optimization(PSO)method is developed by building the network between synergistic requirements and the optimal inertial weight in PSO based on a reinforcement learning method.Thus,the efficiency online computational efficiency can be largely improved.Numerical simulation results indicate the efficiency of the proposed method.
关 键 词:高超声速飞行器 协同轨迹规划 粒子群优化 强化学习
分 类 号:V249.1[航空宇航科学与技术—飞行器设计] V448[自动化与计算机技术—控制理论与控制工程] TP18[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.84.251