检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广东工业大学,广东广州510006 [2]广州星海集成电路基地有限公司,广东广州510006
出 处:《电脑知识与技术》2022年第29期8-11,共4页Computer Knowledge and Technology
基 金:广东省重点领域研发计划资助(2018B030338001、2018B010115002);广东省教育厅创新人才项目和广东工业大学青年百人项目资助(220413548)。
摘 要:针对提取监控视频中行人的时空特征相对困难和使用步态这一时空特征进行小样本学习后,准确率相对较低的问题,提出一种基于多级脉冲特征集融合的行人重识别方法(MSSF)。首先,通过脉冲卷积提取基于步态图像帧的局部行人脉冲特征,在此基础上,将局部脉冲特征映射为具有全局行人属性的脉冲特征集;接着通过融合不同深度级别的脉冲特征集来表征行人的时空多维特征,并使用水平金字塔进一步提取更具区分度的特征;最后,通过时空梯度反向传播优化网络参数。实验在CASIA-B数据集上进行,在小样本学习后,跨视角正确率最高达到了71.7%,提升4.91%,验证了所提方法的有效性。
关 键 词:行人重识别 步态特征 脉冲神经网络 多级脉冲 特征融合 时空梯度
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.49.72