结合CVCA信任评估模型的位置隐私保护方法  被引量:2

Location Privacy Protection Method Combined with CVCA Trust Evaluation Model

在线阅读下载全文

作  者:王辉[1] 王燕鹏 申自浩[1] 刘沛骞[1] 刘琨[1] 甄炜 朱传涵 WANG Hui;WANG Yan-peng;SHEN Zi-hao;LIU Pei-qian;LIU Kun;ZHEN Wei;ZHU Chuan-han(School of Computer Science and Technology,Henan Polytechnic University,Jiaozuo 454000,China)

机构地区:[1]河南理工大学计算机科学与技术学院,河南焦作454000

出  处:《小型微型计算机系统》2022年第12期2644-2650,共7页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(61300216)资助。

摘  要:针对传统K匿名位置隐私保护方法中,用户可信度无法评估,存在协助用户不愿意提供真实位置的信任问题,本文提出了建立信任评估模型来评估用户可信度的位置隐私保护方法.首先,引入信用指标对匿名区构造过程进行量化,结合变异系数法,构建CVCA信任评估模型;其次,为了度量用户可信度,利用CVCA信任评估模型计算信用评分,生成数字信用证书,建立身份验证机制;最后,为降低匿名区构造时延,可信任的协助用户衡量信用评分来判断是否参与匿名区构造.通过安全性分析和实验证明,本方案在降低用户移动终端计算开销的同时,提高了匿名区内用户质量,从而取得更好的隐私保护效果.For the traditional K-anonymous location privacy protection method,the user credibility cannot be evaluated,and there is a trust problem that assists the user in unwilling to provide the real location,this paper proposes a location privacy protection method that establishes a trust evaluation model to evaluate the user′s credibility.First,introduce credit indicators to quantify the process of anonymous zone construction,and combine the coefficient of variation method to construct a CVCA trust evaluation model.Second,in order to measure user credibility,the CVCA trust evaluation model is used to calculate credit score,generate digital credit certificates,and establish the identity verification mechanism.Finally,in order to reduce the delay of anonymous zone construction,trustworthy assist users to measure their credit scores to determine whether to participate in the anonymous zone construction.Security analysis and experiments have proved that this solution can reduce the computing cost of users′mobile terminals and improve the quality of users in the anonymous area,thereby achieving better privacy protection effects.

关 键 词:位置隐私 K匿名 变异系数法 信任评估 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象