基于C3D CNN的人脸表情识别系统设计与开发  

Design and Development of Facial Expression Recognition System Based on Deep Learning

在线阅读下载全文

作  者:吴家辉 周涛[1] 罗明新 肉扎吉·依马穆 WU Jiahui;ZHOU Tao;LUO Mingxin;ROUZHAJI·Yimamu(School of Computer and Electronic Information,Guangxi University,Nanning Guangxi 530004,China)

机构地区:[1]广西大学计算机与电子信息学院,广西南宁530004

出  处:《信息与电脑》2022年第14期104-107,共4页Information & Computer

基  金:自治区级大学生创新创业训练计划项目(项目编号:202110593229)。

摘  要:为了实现对人脸表情的自动识别,笔者设计和开发了一款基于C3D卷积神经网络(Convolutional Neural Network,CNN)的人脸表情识别系统。首先,利用已有Cohn-Kanade数据集和CASMEⅡ数据集作为训练数据。其次,使用Keras和TensorFlow的深度学习框架搭建C3D CNN,创建数据集并进行训练,以得到人脸表情识别模型。最后,使用PyQt5设计和开发人脸表情识别系统。结果表明,该系统具有页面简洁明了、方便用户操作等特点,可为心理诊断等领域提供一定的判断依据。In order to realize the automatic recognition of facial expression, the author designs and develops a facial expression recognition system based on C3D Convolutional Neural Network(CNN). Firstly, the existing Cohn-Kanade data set and CASMEⅡ data set are used as training data. Secondly, the C3D CNN is built using the deep learning framework of keras and TensorFlow, and the data set is created for training to obtain the facial expression recognition model. Finally, we use PyQt5 to design and develop a facial expression recognition system. The results show that the system has the characteristics of simple and clear pages, convenient for users to operate and so on. Automatic recognition of facial expressions can provide a certain basis for psychological diagnosis, criminal interrogation and other fields.

关 键 词:人脸表情 识别系统 C3D卷积神经网络(CNN) 心理诊断 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象