检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡文娟[1] 贾红涛[1] Hu Wenjuan;Jia Hongtao(Mechatronic Engineering Department,Shangluo Vocational and Technical College,Shaanxi Shangluo,726000,China)
机构地区:[1]商洛职业技术学院机电工程学院,陕西商洛726000
出 处:《机械设计与制造工程》2022年第11期77-80,共4页Machine Design and Manufacturing Engineering
摘 要:为提高汽车故障诊断的准确率,提出一种基于改进人工鱼群算法优化BP神经网络的汽车故障诊断方法。在分析BP神经网络基本原理和局限的基础上,利用改进人工鱼群算法对BP神经网络参数寻优,从而进一步提高汽车故障诊断的准确率。仿真结果表明,基于改进人工鱼群算法优化BP神经网络的迭代次数为13次,少于未经参数优化的BP神经网络迭代次数,并可有效识别11种不同类型的汽车故障。研究表明,基于改进人工鱼群算法优化BP神经网络在提高汽车故障诊断的准确率上可行。In order to improve the accuracy of automobile fault diagnosis,an automobile fault diagnosis method based on improved artificial fish swarm algorithm and optimized BP neural network is proposed.On the basis of analyzing the basic principles and limitations of BP neural network,the improved artificial fish swarm algorithm is used to optimize the parameters of BP neural network,so as to further improve the accuracy of automobile fault diagnosis.The simulation results show that the iteration times of BP neural network optimized by improved artificial fish swarm is 13 times,which is less than that of the BP neural network without parameter optimization.The BP neural network model is applied to automobile fault diagnosis,thus 11 kinds of automobile faults can be effectively identified.Through the above results,it is proved that the proposed automobile fault diagnosis model based on BP neural network optimized by improved artificial fish swarm algorithm is feasible.
分 类 号:TH17[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222