检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张勇[1,3] 郭永存[2,3] 陈伟[2,3] 王爽[2,3] 程刚[2,3] ZHANG Yong;GUO Yongcun;CHEN Wei;WANG Shuang;CHENG Gang(School of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan 232001,China;School of Mechanical Engineering,Anhui University of Science and Technology,Huainan 232001,China;State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines,Anhui University of Science and Technology,Huainan 232001,China)
机构地区:[1]安徽理工大学电气与信息工程学院,安徽淮南232001 [2]安徽理工大学机械工程学院,安徽淮南232001 [3]安徽理工大学深部煤矿采动响应与灾害防控国家重点实验室,安徽淮南232001
出 处:《中国粉体技术》2023年第1期61-70,共10页China Powder Science and Technology
基 金:国家自然科学基金项目,编号:51904007;安徽省科技重大专项资助项目,编号:18030901049;安徽省高校协同创新项目,编号:GXXT-2021-076。
摘 要:针对传统轻量型卷积神经网络模型复杂度高,移动端识别速度慢,小样本数据集上训练、识别效果差的等问题,提出一种高效的改进后的移动端煤矸识别方法;分析卷积神经网络模型轻量化的方法,并从注意力机制、激活函数和分类头3个方面对MobileNetv3网络进行改进,通过模型量化压缩网络在移动端部署模型,分析改进网络量化前、后的空间存储容量,浮点运算次数,推理时间和识别准确率;在移动端煤矸识别实验装置中训练、部署和测试模型的识别效果。结果表明:改进后网络经过20次的训练后模型即收敛,收敛速度较快,训练和验证准确率均大于99%;改进后模型经量化压缩后模型存储容量较小,仅为原网络的24.64%,模型复杂度大幅度下降;移动端推理时间仅为77 ms,识别准确率达到99.7%;利用实验装置实时采集的煤和矸石图像的识别效果较好,识别方法可靠。An efficient and improved mobile terminal coal and gangue recognition method(E-MobileNetv3)was proposed,aiming at the problems such as high complexity of traditional lightweight convolutional neural network model,slow recognition speed of mobile terminal,poor training and recognition effect on small sample data sets.The lightweight method of convolutional neural network model was analyzed,and the MobileNetv3 network was improved from the three aspects of attention mechanism,activation function and classification head.The spatial storage capacity,floating point operation number,inference time and recognition accuracy of the improved network before and after quantization were analyzed by the model quantization compression network deployment model on the mobile devices.The model was trained,deployed and tested in an experimental equipment for coal and gangue recognition at mobile device.The results show that the improved network model converges after 20 times of training,the convergence speed is fast,and the accuracy of training and verification is greater than 99%.After quantization and compression,the storage capacity of the improved model is smaller,only 24.64%of that of the original network,and the complexity of the model is greatly reduced.The inference time of mobile device is only 77 ms,and the recognition accuracy reaches 99.7%.The identification effect of coal and gangue images collected in real time by the experimental device is good,which verifies the reliability of the identification method.
关 键 词:煤矸识别 网络轻量化 模型压缩 注意力机制 小样本数据集 移动端
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117

