检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈永刚[1] 韩思成 贾水兰 许继业 CHEN Yonggang;HAN Sicheng;JIA Shuilan;XU Jiye(School of Automatization and Electric Engineerings Lanzhou Jiaotong University,Lanzhou 730070,China)
机构地区:[1]兰州交通大学自动化与电气工程学院,兰州730070
出 处:《全球定位系统》2022年第5期88-93,共6页Gnss World of China
基 金:国家自然科学基金(52062028)。
摘 要:针对虚拟应答器(VB)信息融合时使用Kalman滤波易出现滤波发散的问题,提出了基于改进Sage-Husa自适应滤波算法的信息融合方法.首先采用自适应滤波动态调节噪声统计特性参数,抑制滤波发散,在预测误差方差矩阵中引入衰减因子,减小陈旧数据的影响进而提高滤波精度,最后进行仿真实验,将所提出的滤波算法与Kalman滤波和Sage-Husa自适应滤波在VB的位置误差和速度误差上进行对比.仿真结果证明:在相同的时间内,本文所述算法在VB的定位误差上具有显著优势,具有较好地稳定性.To address the problem that the Kalman filter was prone to filter divergence when using the virtual balise(VB)information fusion,an information fusion method based on the improved Sage-Husa adaptive filtering algorithm was proposed:firstly,the adaptive filtering was used to dynamically adjust the noise statistical characteristics parameters to suppress filter divergence,secondly,an attenuation factor was introduced into the prediction error variance matrix to reduce the influence of stale data and thus improve the filtering accuracy,and finally,simulation experiment was conducted to compare the proposed algorithm with the Kalman filter and Sage-Husa adaptive filter in terms of position and velocity error of the VB.The simulation outcome reveals that the algorithm has an obvious advantage in the positioning error of the VB with better stability in the same time.
关 键 词:虚拟应答器(VB) 信息融合 改进Sage-Husa自适应滤波算法 衰减因子 滤波发散
分 类 号:P228.4[天文地球—大地测量学与测量工程] TP212[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171