检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:白文艳 张家铭 黄万伟[1] 张远 Bai Wenyan;Zhang Jiaming;Huang Wanwei;Zhang Yuan(Beijing Aerospace Automatic Control Institute,Beijing 100854,China;National Key Laboratory of Science and Technology on Aerospace Intelligent Control,Beijing 100854,China)
机构地区:[1]北京航天自动控制研究所,北京100854 [2]宇航智能控制技术国家级重点实验室,北京100854
出 处:《航天控制》2022年第5期47-52,共6页Aerospace Control
摘 要:针对飞行器传统增益调参法依赖于人工经验繁琐费时、难以实现参数自整定的缺点,提出了利用强化学习中的深度Q网络算法与飞行环境状态的交互不断学习,实现对控制增益的自动调整动作。训练结果表明,该方法使高速飞行器能够自适应调整控制增益,稳定跟踪攻角指令,节省了人工调参步骤及时间,有效提高了控制系统自适应性。Aiming at the shortcomings of the traditional gain scheduling interpolation method which relies on the experience of engineers and is time-consuming and laborious,and is difficult to meet the real-time control effect,the interaction is porposed to be used between the deep Q network algorithm and the flight environment state to realize the automatic control gain adjustment action.The training results show that the control gain can be adjusted adaptively in the hyper-sonic vehicle,the angle of attack command can be tracked effectively and strong robustness behaves by using this method.
分 类 号:V448.2[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7