检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐广通 许烨烽 闫慧博 汪潮洋 刘志强 娄春[2] TANG Guangtong;XU Yefeng;YAN Huibo;WANG Chaoyang;LIU Zhiqiang;LOU Chun(State Grid Hebei Energy Technology Service Co.,Ltd.,Shijiazhuang 050021,China;School of Energy and Power Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)
机构地区:[1]国网河北能源技术服务有限公司,石家庄050021 [2]华中科技大学能源与动力工程学院,武汉430074
出 处:《动力工程学报》2022年第10期960-966,共7页Journal of Chinese Society of Power Engineering
基 金:国家自然科学基金资助项目(51827808);国网河北能源技术服务有限公司2021年科技资助项目(TSS2021-01)。
摘 要:利用热辐射成像模型计算训练数据,基于多层感知器(MLP)神经网络重建炉膛温度场,以某300MW锅炉为例进行在线测量实验,并通过机组调峰分析了燃料量和风量对温度的影响。结果表明:MLP神经网络对不同温度场重建结果的最大相对误差小于2%,添加噪声后最大相对误差也小于4%,其具有较好的泛化能力、预测能力和抗噪能力;炉内温度的升高趋势明显快于负荷,且风量对机组负荷的影响更大;所提出的耦合深度学习与热辐射成像的炉内温度场在线测量系统在提升煤电机组的灵活调峰能力方面具有较好的应用潜力。Thermal radiative imaging model was used to calculate the training data, and the temperature field in furnace was reconstructed based on multi-layer perceptron(MLP) neural network. Taking a 300 MW boiler as an example, the online measurement experiment was carried out and the influence of fuel and air volume on temperature was analyzed by boiler load adjustment. Results show that the maximum relative error of the reconstruction results of the MLP neural network for different temperature fields is less than 2%, and the maximum relative error after adding noise is also less than 4%, which has good generalization, prediction, and anti-noise ability. The increase trend of furnace temperature is significantly faster than that of load, and the influence of air volume on unit load is greater. The proposed online measurement system of furnace temperature field coupled with deep learning and thermal radiative imaging has good application potential in improving the flexible peak regulation ability of coal-fired power units.
关 键 词:炉内温度场 在线监测 深度学习 多层感知器 热辐射成像
分 类 号:TK16[动力工程及工程热物理—热能工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.40.152