基于线扫描技术的轴承表面缺陷检测方法研究  被引量:6

Study on detection method of bearing surface defect based on line scanning technology

在线阅读下载全文

作  者:徐佳乐 黄丹平 廖世鹏[2] 甘芳吉[3] XU Jiale;HUANG Danping;LIAO Shipeng;GAN Fangji(School of Mechanical Engineering,Sichuan University of Science&Engneering,Yibin 644000,China;Chendu Institute of Computer Application,Chinese Academy of Sciences,Chengdu 610041,China;School of Mechanical Engineering,Sichuan University,Chendu 610065,China)

机构地区:[1]四川轻化工大学机械工程学院,四川宜宾644000 [2]中国科学院成都计算机应用研究所,四川成都610041 [3]四川大学机械工程学院,四川成都610065

出  处:《中国测试》2022年第11期88-94,共7页China Measurement & Test

基  金:四川省重点实验室项目(NJ2018-05);自贡市科技局重点项目(2019YYJC12);四川轻化工大学创新基金项目(y2020007)。

摘  要:针对目前轴承表面缺陷检测所面临问题,探求一种基于线扫描技术的轴承表面缺陷检测方法。由轴承表面特征,提出一种具有高信噪比的线扫描轴承表面信息采集系统。在此基础上,为解决浅凹坑、锈迹缺陷识别准确率低等问题,首先对所采集图像进行轴承区域提取,消除检测干扰,其次提出基于生成对抗的重构网络对采集到轴承信息进行图像重构,使其为无缺陷图像,最终通过残差方法提取和定位轴承表面缺陷。该算法重点对损失函数进行改进,采用L1 loss与SSIM组合损失函数,提高图像的重构精度。实验表明:所提方法能有效识别各种缺陷,尤其是微小缺陷,综合识别率达到98.58%,满足实际工程精度要求。Aiming at the problems of bearing surface defect detection,a method of bearing surface defect detection based on line scanning technology was proposed.Based on the characteristics of bearing surface,a bearing surface information acquisition system with high signal-to-noise ratio(SNR)was proposed.On this basis,in order to solve the recognition accuracy in shallow depressions and rust defect was low,firstly,bearing regions of collected images were extracted for eliminating interference of detection,secondly proposed reconstructing networks based on generative adversarial to be used for image reconstruction of the bearing information,make it to none-defect image,at the end,used residual method to extract and locate the bearing surface flaw.The algorithm focuses on the improvement of the loss function,used the combination of L1 loss and SSIM loss function to improve the accuracy of image reconstruction.Experimental results show that the proposed method can effectively identify various defects,especially minor defect,and the comprehensive recognition ratio reaches 98.58%,which meets the requirement of actual engineering accuracy.

关 键 词:轴承表面缺陷 线阵相机扫描 图像重构 机器视觉 生成对抗网络 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术] TB9[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象