检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张金良[1] 刘子毅 ZHANG Jinliang;LIU Ziyi(School of Economics and Management,North China Electric Power University,Beijing 102206,China)
机构地区:[1]华北电力大学经济与管理学院,北京102206
出 处:《电力系统保护与控制》2022年第22期49-58,共10页Power System Protection and Control
基 金:国家自然科学基金项目资助(71774054);中央高校基本科研业务专项资金资助(2019MS055)。
摘 要:准确的风速预测能够促进大规模的风电并网,保证电力系统的安全稳定运行。针对传统点预测方法难以表征预测结果概率可信度问题,提出一种基于模糊信息粒化、改进长短期记忆网络与差分自回归移动平均模型的混合区间预测模型。首先,采用自适应噪声的完全集合经验模态分解模型对原始风速数据进行分解,并依据模糊熵重构得到新序列。在此基础上,对每个序列依次进行模糊信息粒化,获得最大值、最小值及平均值。最后,利用改进长短期记忆网络模型预测高频序列,差分自回归移动平均模型预测低频序列与余项,并将所得上下界求和得到最终风速区间。算例分析表明,所提模型得出的风速预测区间能够准确覆盖实测风速,为电力系统调度提供更多有价值的决策信息。Accurate wind speed prediction can promote large-scale wind power integration and ensure the safe and stable operation of a power system.There is a problem in that traditional point prediction methods find it difficult to represent the probability credibility of prediction results.This paper proposes a hybrid interval prediction model based on fuzzy information granulation,an improved long short-term memory network and an autoregressive integrated moving average model.First,the original wind speed data is decomposed by a complete set empirical mode decomposition model of adaptive noise,and the new sequence is reconstructed according to fuzzy entropy.Then the fuzzy information of each sequence is granulated to obtain the maximum,minimum and average values.Finally,the improved long short-term memory network model is used to predict the high-frequency series,and the autoregressive integrated moving average model is used to predict the low-frequency series and the remainder,and then the obtained upper and lower bounds are summed to obtain the final wind speed interval.Example analysis shows that the wind speed prediction interval obtained by this model can accurately cover the measured wind speed and provide more valuable decision-making information for power system dispatching.
关 键 词:风速区间预测 模糊信息粒化 改进长短期记忆神经网络 差分自回归移动平均模型 混合模型
分 类 号:TM614[电气工程—电力系统及自动化] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200