基于图正则化和Schatten-p范数最小化的交通数据恢复  被引量:3

Traffic Data Imputation Based on Graph Regularization and Schatten-p Norm Minimization

在线阅读下载全文

作  者:陈小波[1] 梁书荣 柯佳[2] 陈玲[1] 胡煜 CHEN Xiaobo;LIANG Shurong;KE Jia;CHEN Ling;HU Yu(Automotive Engineering Research Institute,Jiangsu University,Zhenjiang 212013,China;School of Management,Jiangsu University,Zhenjiang 212013,China)

机构地区:[1]江苏大学汽车工程研究院,江苏镇江212013 [2]江苏大学管理学院,江苏镇江212013

出  处:《西南交通大学学报》2022年第6期1326-1333,共8页Journal of Southwest Jiaotong University

基  金:国家自然科学基金(61773184);国家重点研发计划(2018YFB0105000);江苏省六大人才高峰高层次人才项目(JXQC-007)。

摘  要:为充分利用交通数据低秩特性与局部近邻关系,准确恢复交通数据采集系统中的缺失数据,首先,应用基于核范数的低秩矩阵补全模型对交通数据矩阵进行预插补,以获得缺失值的初始估计,基于此,构建表征数据局部近邻结构的图模型;然后,提出融合图正则化和Schatten-p范数最小化的交通数据缺失值恢复模型;进一步,提出基于交替方向乘子框架的优化算法,求解缺失值恢复的最优化问题,得到最终的数据恢复结果;最后,用实际的高速公路交通流量和速度数据比较多种方法的恢复误差,同时给出所提方法的参数敏感性分析.实验结果表明:在完全随机缺失、随机缺失和混合缺失模式下,缺失率为10%~50%时,相比于局部最小二乘、概率主成分分析和低秩矩阵补全等方法,基于图正则化和Schatten-p范数最小化的算法恢复误差降低了3.02%~28.49%.To make full use of the low-rank characteristics and local neighbor relationship of the traffic data, and accurately recover the missing data in traffic data acquisition system, firstly, the traffic data matrix is preinterpolated by the low-rank matrix completion model based on kernel norm to obtain the initial estimate of the missing data. Based on this, a graph model that characterizes the local neighbor structure of the data is constructed. Then, a missing value imputation model combining graph regularization and Schatten-p norm minimization is proposed. Furthermore, an optimization algorithm based on alternating direction multiplier framework is proposed to solve the optimization of missing value imputation, so as to obtain the final imputation result. Finally, the real expressway traffic volume and speed data are used to compare the imputation errors of several methods, and the parameter sensitivity of the proposed method is analyzed. The experimental results show that compared with local least squares, probabilistic principal component analysis and low-rank matrix completion, the proposed method reduces the error of traffic data imputation by 3.02%-28.49% when the missing rate is 10%-50% in missing completely at random mode, missing at random mode and mixed missing mode.

关 键 词:智能交通 数据恢复 Schatten-p范数 交通数据 图正则化 

分 类 号:U495[交通运输工程—交通运输规划与管理] TP311.1[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象