基于卷积神经网络的发动机主轴承盖姿态识别算法  

Posture Recognition Algorithm of Engine Main Bearing Cover Based on Convolutional Neural Network

在线阅读下载全文

作  者:于微波[1] 周旺 杨宏韬[1] 李昱 YU Wei-bo;ZHOU Wang;YANG Hong-tao;LI Yu(School of Electrical and Electronic Engineering,Changchun University of Technology,Changchun 130012,China)

机构地区:[1]长春工业大学电气与电子工程学院,长春130012

出  处:《科学技术与工程》2022年第32期14282-14288,共7页Science Technology and Engineering

基  金:吉林省教育厅项目(JJKH20210744KJ);吉林省科技发展计划项目(20200401118GX)。

摘  要:针对传统姿态识别算法识别精度不高,通用性不强,易受环境因素的影响,且需要对检测图像进行复杂的图像预处理操作的问题。基于卷积神经网络的特征提取能力和识别分类能力,提出一种基于卷积神经网络的发动机主轴承盖姿态识别算法,所提算法去除了传统复杂的预处理操作,通过提取轴承盖4个面的特征,对轴承盖4个面进行识别。实验结果表明:所提算法不仅可以正确识别发动机主轴承盖的4个面,而且平均识别精度为100%,平均识别时间为3.80 s,具有识别精度高,识别时间短,抗干扰能力强的特点。Aiming at the problems of low recognition accuracy and low versatility of traditional gesture recognition algorithms,is easily affected by environmental factors,and complex image preprocessing operations are required for the detected images.Based on the feature extraction capabilities and recognition and classification capabilities of the convolutional neural network,a convolutional neural network-based recognition algorithm for the engine main bearing cover surface was proposed.The proposed algorithm removed the traditional complex preprocessing operations and extracts four surfaces of the bearing cover.To identify the four faces of the bearing cap.Experimental results show that the proposed algorithm can correctly identify the four faces of the main bearing cover of the engine,with an average recognition accuracy of 100%and an average recognition time of 3.80 s.It has the characteristics of high recognition accuracy,short recognition time,and strong anti-interference ability.

关 键 词:发动机主轴承盖 姿态识别 卷积神经网络 深度学习 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象