检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:包吉祥 李林[1] 赵梦鸽 BAO Jixiang;LI Lin;ZHAO Mengge(Business School,University of Shanghai for Science&Technology,Shanghai 200093,China)
出 处:《计算机工程与应用》2022年第24期276-283,共8页Computer Engineering and Applications
摘 要:消费者网络购物浏览时间碎片化、对价格更敏感的特征带来滞后性消费。为了掌握顾客消费趋势,通过获取Q企业纸类商品的历史销售数据和消费者购买行为数据,分析消费者行为对销售数据的影响,并利用随机森林分别选取不考虑滞后性和考虑滞后性的特征因子;基于LSTM神经网络建立快消品的需求预测模型;根据Q企业纸类商品的数据进行预测及验证,结果表明考虑滞后性LSTM模型预测相对误差更小,预测精度更高。The fragmented browsing time and more price-sensitive features of consumer online shopping bring lagging consumption.In order to grasp customer consumption trends,the impact of consumer behavior on sales data is analyzed by obtaining historical sales data and consumer purchase behavior data of paper products for Q enterprise.And random forest is used to select characteristic factors that do not consider hysteresis and consider hysteresis respectively.The demand forecasting model for fast-moving consumer goods is established based on LSTM neural network.According to the data of paper products of Q enterprise,the prediction and verification are carried out.The results show that the relative error of the LSTM model is smaller and the prediction accuracy is the higher when considering the hysteresis.
关 键 词:长短期记忆人工神经网络(LSTM) 滞后性 电商需求预测 随机森林
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145