鼻-颅底快速路径提取与自动导航  

Nasal-Skull Base Fast Path Extraction and Automatic Navigation

在线阅读下载全文

作  者:韩靖 孙晓宇 惠筱 王裕栋 王淼[1] 骆岩林[1] Han Jing;Sun Xiaoyu;Hui Xiao;Wang Yudong;Wang Miao;Luo Yanlin(College of Artificial Intelligence,Beijing Normal University,Beijing 100875)

机构地区:[1]北京师范大学人工智能学院,北京100875

出  处:《计算机辅助设计与图形学学报》2022年第11期1795-1804,共10页Journal of Computer-Aided Design & Computer Graphics

基  金:国家自然科学基金(61977063,12126508,61872020)。

摘  要:在鼻-颅底虚拟内窥镜中,现有的导航路径提取算法运行效率低,自动导航算法容易产生画面剧烈旋转问题.为此,提出基于导航区域预规划的中心路径提取和自适应速度与旋转的自动导航算法.前者改进距离变换法,基于快速扩展随机树预规划导航区域和计算边界距离场图,通过构建最大代价树提取中心路径;后者改进了DoTween方法,根据路径中最短线段长度调节相机移动速度,并根据路径折点处的空腔直径调节预判转向距离.使用DICOM生成的鼻腔模型进行实验,研究结果表明,相比距离变换法,基于导航区域预规划的中心路径提取算法的路径提取速度提升约49倍;相比DoTween等方法,自适应速度与旋转的自动导航算法在折点处画面变化更自然.In the nasal-skull base virtual endoscope,the existing navigation path extraction algorithms have low operation efficiency,and automatic navigation algorithm is easy to cause violent rotation of image.Therefore,a center path extraction algorithm based on navigation area pre-planning and an automatic navigation algorithm based on adaptive speed and rotation are proposed.The former improves the distance transformation method.The navigation area is pre-planned based on the fast expanding random tree and calculate the boundary distance field map,and construct the maximum cost tree to extract the center path.The latter improves the DoTween method.The camera moving speed is adjusted according to the length of the shortest line segment in the path,and the predicted steering distance is adjusted according to the cavity diameter at the vertex in the path.Experiments are conducted with nasal models from DICOM.The results show that the path extraction speed of the center path extraction algorithm based on navigation area pre-planning method is about 49 times faster than the distance transformation method,and the automatic navigation algorithm of adaptive speed and rotation is more natural at the vertices comparing with methods such as DoTween.

关 键 词:虚拟鼻内镜 鼻-颅底模型 中心路径提取 自动导航 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象